Question

In: Physics

Two long straight parallel wires are oriented north-south. Both wires carry constant current due North and...

Two long straight parallel wires are oriented north-south. Both wires carry constant current due North and are 20cm apart. The current in one cable is 30A and in the other 40A . a) Determine the magnitude of the total magnetic field induced by the two cables midway between them. b) determine the position between the cables where the total magnetic field induced by the cables is zero. Give your result as the distance from the 30A cable.

Solutions

Expert Solution

The magnetic field will vanish at point which the magnetic field applelied by wire 1 is equal and opposite to the wire 2.

Please comment if you have any doubts....


Related Solutions

Two long straight wires separated by 0.10 m carry current in the direction as shown. If...
Two long straight wires separated by 0.10 m carry current in the direction as shown. If I1=12 A and I2= 8 A, find the magnitude and the direction of the net magnetic field a) at point A at a distance of 4 cm from wire 2 in the region between wire 1 and 2 b) at point B at a distance 5 cm left of wire 1.
Two long parallel wires are placed side by side on a horizontal table. The wires carry...
Two long parallel wires are placed side by side on a horizontal table. The wires carry equal currents in the same direction. Which of the following statements are true? Check all that apply. The magnetic field is a maximum at a point midway between the two wires The magnetic force between the two wires is attractive. The magnetic force between the two wires is repulsive. The magnetic field at a point midway between the two wires is zero. 
Two straight parallel wires carry currents in opposite directions as shown in the figure. One of...
Two straight parallel wires carry currents in opposite directions as shown in the figure. One of the wires carries a current of I2 = 10.2 A. Point A is the midpoint between the wires. The total distance between the wires is d = 12.1 cm. Point C is 5.03 cm to the right of the wire carrying current I2. Current I1 is adjusted so that the magnetic field at C is zero. Calculate the value of the current I1.Calculate the...
1. Imagine two very long, parallel, straight wires carrying a current, I, in equal but opposite...
1. Imagine two very long, parallel, straight wires carrying a current, I, in equal but opposite directions. (a) Discussing from a qualitative point of view, explain [8] i. why such a system can be considered to have an inductance; and ii. how one can set up an experiment to measure the inductance of such a system. (b) From a point of view of theoretically calculating the inductance of such a system, why can you not assume that these wires have...
Two very long straight wires carry current I in opposite directions as shown below. The distance...
Two very long straight wires carry current I in opposite directions as shown below. The distance from the origin to each of the wires is d. Draw the magnetic field vector on the figure for each of the points listed below. You must indicate both the magnitude and direction of the magnetic field at all points. The origin x=0, y=0 x= 2d, y=0 x= -2d, y=0 x=d, y = -d x= -d, y=d
Two long parallel wires carry currents of 2.0 A and 3.0 A in the same directions....
Two long parallel wires carry currents of 2.0 A and 3.0 A in the same directions. The wires are separated by 50 cm. At what point between the two wires the total magnetic field is zero? Please backup your solution with a picture!
Two long straight parallel wires are 11 cm apart. Wire A carries 2.0-A current. Wire B's...
Two long straight parallel wires are 11 cm apart. Wire A carries 2.0-A current. Wire B's current is 5.0 A in the same direction. Determine the magnetic field magnitude due to wire A at the position of wire B. Determine the magnetic field due to wire B at the position of wire A Are these two magnetic fields equal and opposite? Determine the force per unit length on wire A due to wire B. Determine the force per unit length...
Two long parallel wires each carry 2.8 A in the same direction, with their centers 1.5...
Two long parallel wires each carry 2.8 A in the same direction, with their centers 1.5 cm apart. Part B:Find the magnitude of the magnetic field at a point in the same plane as the wires, 1.5 cm from one wire and 3.0 cm from the other. Part C: Find the magnitude of the force of interaction (per length) between the wires
Two long parallel wires 20 cm apart carry currents of 5.0 A and 8.0 A in...
Two long parallel wires 20 cm apart carry currents of 5.0 A and 8.0 A in opposite directions. At what point is the net magnetic field due to the two of them zero? 12 cm from th3 8-A wire 53 cm from the 5-A wire 33 cm from the 8-A wire There is no point where the net magnetic field is zero. 33 cm from the 5-A wire
Three long straight parallel wires are each carrying a steady current I in the same direction....
Three long straight parallel wires are each carrying a steady current I in the same direction. They are equidistant from each other with separation d. What force per unit length does one wire experience due to the other two?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT