In: Finance
D(t+1) = D(t)*(1+g1) | ||||
D0 | 1 | |||
For the first year | ||||
g1 | 0.25 | |||
D1 | 1*(1+.25) | |||
D1 | 1.25 | |||
For the second year | ||||
g2 | 0.2 | |||
D2 | 1.25*(1+.2) | |||
D2 | 1.5 | |||
For the third year | ||||
g3 | 0.15 | |||
D3 | 1.5*(1+.15) | |||
D3 | 1.725 | |||
For the fourth year | ||||
g4 | 0.05 | |||
D4 | 1.725*(1+.05) | |||
D4 | 1.81125 | |||
According to the dividend growth model. | ||||
P4 = D5/(R-g4) | ||||
D5 | 1.81125*(1.05) | |||
D5 | 1.9018125 | |||
R is the required rate of return that is 10% | ||||
P4 | 1.9018125/(.10 - .05) | |||
P4 | 38.03625 | |||
Cash flow in year 4 | D4+P4 | |||
Cash flow in year 4 | 39.8475 | |||
The price of the stock today = sum of present value of future cash flows. | ||||
Using R = .10 | ||||
Year | 1 | 2 | 3 | 4 |
Cash flow | 1.25 | 1.5 | 1.725 | 39.8475 |
Present value | 1.14 | 1.24 | 1.30 | 27.22 |
sum of present values | 30.89 | |||
The price of the stock today is equal to $30.89. |