In: Finance
| D(t+1) = D(t)*(1+g1) | ||||
| D0 | 1 | |||
| For the first year | ||||
| g1 | 0.25 | |||
| D1 | 1*(1+.25) | |||
| D1 | 1.25 | |||
| For the second year | ||||
| g2 | 0.2 | |||
| D2 | 1.25*(1+.2) | |||
| D2 | 1.5 | |||
| For the third year | ||||
| g3 | 0.15 | |||
| D3 | 1.5*(1+.15) | |||
| D3 | 1.725 | |||
| For the fourth year | ||||
| g4 | 0.05 | |||
| D4 | 1.725*(1+.05) | |||
| D4 | 1.81125 | |||
| According to the dividend growth model. | ||||
| P4 = D5/(R-g4) | ||||
| D5 | 1.81125*(1.05) | |||
| D5 | 1.9018125 | |||
| R is the required rate of return that is 10% | ||||
| P4 | 1.9018125/(.10 - .05) | |||
| P4 | 38.03625 | |||
| Cash flow in year 4 | D4+P4 | |||
| Cash flow in year 4 | 39.8475 | |||
| The price of the stock today = sum of present value of future cash flows. | ||||
| Using R = .10 | ||||
| Year | 1 | 2 | 3 | 4 |
| Cash flow | 1.25 | 1.5 | 1.725 | 39.8475 |
| Present value | 1.14 | 1.24 | 1.30 | 27.22 |
| sum of present values | 30.89 | |||
| The price of the stock today is equal to $30.89. | ||||