Question

In: Physics

A 2.90-kg box is sliding along a frictionless horizontal surface with a speed of 1.8 m/s...

A 2.90-kg box is sliding along a frictionless horizontal surface with a speed of 1.8 m/s when it encounters a spring.

(a) Determine the force constant of the spring, if the box compresses the spring 5.30 cm before coming to rest.

(b) Determine the initial speed the box would need in order to compress the spring by 1.50 cm.

Solutions

Expert Solution

As Surface is frictionless hence no friction force will be present. So only spring force will act on the box.

Then work energy theorem is applied to find the force constant of the spring.

Solution is given below with proper steps


Related Solutions

The 2-kg box is sliding along a frictionless surface at a velocity of 2m/s. It collides...
The 2-kg box is sliding along a frictionless surface at a velocity of 2m/s. It collides with a resting 5-kg box. Assuming that the collision is perfectly elastic, calculate the speed of the two boxes after the collision?
A 0.990 kg block slides on a frictionless, horizontal surface with a speed of 1.40 m/s....
A 0.990 kg block slides on a frictionless, horizontal surface with a speed of 1.40 m/s. The block encounters an unstretched spring with a force constant of 231 N/m. Before the block comes to rest, the spring is compressed by 9.17 cm. 1) Suppose the force constant of the spring is doubled, but the mass and speed of the block remain the same. By what multiplicative factor do you expect the maximum compression of the spring to change? Explain. 2)...
A 1.85 kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface...
A 1.85 kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 980 N/m . The block comes to rest after compressing the spring 4.15 cm. A.Find the spring potential energy, U, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of 0 cm. B.Find the spring potential energy, U, the kinetic energy of the block, K,...
A 1.20 kg block slides with a speed of 0.860 m/s on a frictionless horizontal surface...
A 1.20 kg block slides with a speed of 0.860 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 516 N/m . The block comes to rest after compressing the spring 4.15 cm. A. Find the spring potential energy, U, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of 0 cm. B. Find the spring potential energy, U, the kinetic energy of the...
A 1.78-kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface until...
A 1.78-kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 660 N/m. The block comes to rest after compressing the spring 4.18 cm. Calculate the spring potential energy for a compression of 0 cm. Calculate the kinetic energy of the block for a compression of 0 cm. Calculate the total mechanical energy of the system for a compression of 0 cm. Calculate the spring potential...
A 1.30 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring...
A 1.30 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring with k = 410 N/m. Let x be the displacement of the block from the position at which the spring is unstretched. At t = 0 the block passes through x = 0 with a speed of 7.60 m/s in the positive x direction. What are the (a) frequency and (b) amplitude of the block's motion? (a) Number Enter your answer for part (a)...
A block of mass m = 1.0 kg sliding along a rough horizontal surface is traveling...
A block of mass m = 1.0 kg sliding along a rough horizontal surface is traveling at a speed v0 = 10.0m/s when it strikes a massless spring head-on (see figure) and compresses the spring a maximum distance X =0.25m. If the spring has stiffness constant k = 100. N/m, determine the coefficient of kinetic friction between block and surface.
Mass M moves to the right with speed =v along a frictionless horizontal surface and crashes...
Mass M moves to the right with speed =v along a frictionless horizontal surface and crashes into an equal mass M initially at rest. Upon colliding, the two masses stick together and move with speed V to the right. Notice that v and V denote different speeds.  After the collision the magnitude of the momentum of the system is: (pick all correct answers) 2 M V M V 0 2 M v M v
A 1.50 kg book is sliding along a rough horizontal surface. At point A it is...
A 1.50 kg book is sliding along a rough horizontal surface. At point A it is moving at 3.21 m/s , and at point B it has slowed to 1.25 m/s . Part A How much work was done on the book between A and B ? Part B If -0.750J of work is done on the book from B to C , how fast is it moving at point C ? Part C How fast would it be moving...
A 10 kg mass is sliding at 8 m/s along a frictionless floor toward an ideal...
A 10 kg mass is sliding at 8 m/s along a frictionless floor toward an ideal massless spring. When the mass hits the spring, they stick together without any loss of energy. The mass stops briefly at x = +4.2 m before moving back toward equilibrium. (Assume x = 0 at the point at which the mass sticks to the spring and t = 0 when the mass first makes contact with the spring.)a)What is the spring constant of the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT