Question

In: Advanced Math

Prove that if a sequence is bounded, then limsup sn is a real number.

Prove that if a sequence is bounded, then limsup sn is a real number.

Solutions

Expert Solution


Related Solutions

Let (an) be a real sequence in the standard metric. Prove that (an) is bounded if...
Let (an) be a real sequence in the standard metric. Prove that (an) is bounded if and only if every subsequence of (an) has a convergent subsequence.
E.C. 2. (10 pts.) Suppose that (sn) is a sequence of real numbers such that sn...
E.C. 2. (10 pts.) Suppose that (sn) is a sequence of real numbers such that sn ≥ 0 for all n ∈ N. (a) Show that the set of subsequential limits of S satisfies S ⊆ [0,∞) ∪ {+∞}. (b) Is it possible for S = [0,∞) ? (Hint: apply Theorem 11.9.) Legible handwriting is a must
Sn = (1+(1/n))^n (a) Prove Sn is strictly increasing (b) bounded below by 2 and above...
Sn = (1+(1/n))^n (a) Prove Sn is strictly increasing (b) bounded below by 2 and above by 3 (c) Sn converges to e (d) Obtain an expression for e (e) Prove e is irrational
Let {an} be a bounded sequence. In this question, you will prove that there exists a...
Let {an} be a bounded sequence. In this question, you will prove that there exists a convergent subsequence. Define a crest of the sequence to be a term am that is greater than all subsequent terms. That is, am > an for all n > m (a) Suppose {an} has infinitely many crests. Prove that the crests form a convergent subsequence. (b) Suppose {an} has only finitely many crests. Let an1 be a term with no subsequent crests. Construct a...
Prove that if a sequence is bounded, then it must have a convergent subsequence.
Prove that if a sequence is bounded, then it must have a convergent subsequence.
Let (sn) be a sequence that converges. (a) Show that if sn ≥ a for all...
Let (sn) be a sequence that converges. (a) Show that if sn ≥ a for all but finitely many n, then lim sn ≥ a. (b) Show that if sn ≤ b for all but finitely many n, then lim sn ≤ b. (c) Conclude that if all but finitely many sn belong to [a,b], then lim sn belongs to [a, b].
if (a_n) is a real cauchy sequence and b is also real, prove i) (|a_n|) is...
if (a_n) is a real cauchy sequence and b is also real, prove i) (|a_n|) is a cauchy sequence ii) (ba_n) is also a cauchy sequence
Prove Corollary 4.22: A set of real numbers E is closed and bounded if and only...
Prove Corollary 4.22: A set of real numbers E is closed and bounded if and only if every infinite subset of E has a point of accumulation that belongs to E. Use Theorem 4.21: [Bolzano-Weierstrass Property] A set of real numbers is closed and bounded if and only if every sequence of points chosen from the set has a subsequence that converges to a point that belongs to E. Must use Theorem 4.21 to prove Corollary 4.22 and there should...
Prove that if f is a bounded function on a bounded interval [a,b] and f is...
Prove that if f is a bounded function on a bounded interval [a,b] and f is continuous except at finitely many points in [a,b], then f is integrable on [a,b]. Hint: Use interval additivity, and an induction argument on the number of discontinuities.
Consider the sequence sn defined as: s0 = 1 s1 = 1 sn = 2sn-1 +...
Consider the sequence sn defined as: s0 = 1 s1 = 1 sn = 2sn-1 + sn-2 What is the base case for this recursive relation? Find s5 Write the pseudocode for a recursive function to find Sn for any arbitrary value of n. Create a non-recursive formula for finding the nth term in the sequence in O(1) time.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT