Question

In: Physics

<1> An automobile of mass 1500kg moving at 25m/s collides with a truck of mass 4500kg...

<1>

An automobile of mass 1500kg moving at 25m/s collides with a truck of mass 4500kg at rest. This time, the car and the truck bounce off each other completely elastically. What is the final velocity of the truck after the collision? Call the direction of the automobile before the collision positive.

<2>

An automobile of mass 1500kg moving at 25m/s collides with a truck of mass 4500kg at rest. This time, the car and the truck bounce off each other completely elastically. What is the final velocity of the car after the collision? Call the initial direction of the automobile positive.

Solutions

Expert Solution

The initial direction of the velocity of the automobile before the collision is positive.

Mass of the automobile = m1 = 1500 kg

Mass of the truck = m2 = 4500 kg

Velocity of the automobile before the collision = V1 = 25 m/s

Velocity of the truck before the collision = V2 = 0 m/s (At rest)

Velocity of the automobile after the collision = V3

Velocity of the truck after the collision = V4

The collision is completely elastic.

Coefficient of restitution = e = 1

V4 = V3 + 25

By conservation of linear momentum,

m1V1 + m2V2 = m1V3 + m2V4

(1500)(25) + (4500)(0) = (1500)V3 + (4500)(V3 + 25)

37500 = 1500V3 + 4500V3 + 112500

6000V3 = -75000

V3 = -12.5 m/s

Negative sign indicates it is moving in the opposite direction of the initial direction of the automobile.

V4 = V3 + 25

V4 = (-12.5) + 25

V4 = 12.5 m/s

1) Final velocity of the truck after the collision = 12.5 m/s

2) Final velocity of the car after the collision = -12.5 m/s


Related Solutions

Mass 1 is moving at 6 m/s in the +x direction and it collides in a...
Mass 1 is moving at 6 m/s in the +x direction and it collides in a perfectly elastically with mass 2 of 2 kg moving at 15 in the -x direction. They collide for 0.2 seconds, and the average force on mass 1 is 149 N in the -x direction. What is the mass of mass 1 in kg?
A mass is moving at 10 m/s in the +x direction and it collides in a...
A mass is moving at 10 m/s in the +x direction and it collides in a perfectly elastic collision with a mass of 4 kg moving in the -x direction. The collision takes places in 0.22 seconds and after the collision the mass that was moving in the +x direction is moving in the -x direction at 8 m/s and the mass that was moving in the -x direction is moving in the +x direction at 14 m/s. What is...
A mass is moving at 10 m/s in the +x direction and it collides in a...
A mass is moving at 10 m/s in the +x direction and it collides in a perfectly elastic collision with a mass of 2 kg moving in the -x direction. The collision takes places in 0.21 seconds and after the collision the mass that was moving in the +x direction is moving in the -x direction at 9 m/s and the mass that was moving in the -x direction is moving in the +x direction at 13 m/s. What is...
A meteor with a mass of 1 kg moving at 20 km/s collides with Jupiter's atmosphere....
A meteor with a mass of 1 kg moving at 20 km/s collides with Jupiter's atmosphere. The meteor penetrates 100 km into the atmosphere and disintegrates. What is the average force on the meteor once it enters Jupiter's atmosphere (Ignore gravity). *The answer is 2 x 10^3 N but I have no idea why.
4) Mass 1 is initially moving at 3 m/s in the +x direction and it collides...
4) Mass 1 is initially moving at 3 m/s in the +x direction and it collides perfectly elastically with mass 2 moving at 10 m/s in the -x direction. After the collision, mass 1 is moving at 5 m/s in the +x direction. What is the final velocity of mass 2 in m/s? If in the negative x direction, include a negative sign. (Note: the masses are not needed to answer this question.)
A truck with a mass of 1350 kg and moving with a speed of 12.0 m/s...
A truck with a mass of 1350 kg and moving with a speed of 12.0 m/s rear-ends a 821-kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision. vcar = ___________________ m/s vtruck = ____________________ m/s
A car moving at a constant speed collides with a stationary truck at a light and...
A car moving at a constant speed collides with a stationary truck at a light and the car bounces backwards as the truck moves forward. Derive the final velocity of the truck.
A 2 kg mass moving to the right at 10 m/s collides elastically with a 2.4...
A 2 kg mass moving to the right at 10 m/s collides elastically with a 2.4 kg mass moving to the left at 8.33 m/s. After the collision the 2 kg mass moved at a speed vgf in a direction of 30 degrees and the 2.4 kg object at a speed vbf in a direction 30 degrees south of west. (5 pts) a. What is the difference between an elastic and an inelastic collision? (15 pts) b. Find the velocity...
A railroad car of mass 18800 kg moving at 3.85 m/s collides and couples with two...
A railroad car of mass 18800 kg moving at 3.85 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 2.31 m/s. How much kinetic energy is lost in the collision? Answer in units of J.
A railroad car of mass 35000 kg moving at 4.00 m/s collides and couples with two...
A railroad car of mass 35000 kg moving at 4.00 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 2.00 m/s. a) What is the speed of the three coupled cars after the collision? b) How much kinetic energy is lost in the collision?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT