In: Biology
what type of protein target would be better suited for a peptide mimetic approach rather than a small molecule approach in drug discovery? (1 mark)
genome does not in itself enable a comprehensive understanding of human protein function, health, and disease. In the post-genome era, an important challenge is the structural and functional analysis of the gene products, i.e., proteins. Proteins play a major role in almost all biological processes, including enzymatic reactions, structural integrity of cells, organs and tissues, cell motility, immune responses, signal transduction, and sensing. All protein-mediated biological processes are based on specific interactions between proteins and their ligands. Therefore, exploring disease-associated protein–ligand and protein–protein interactions is essential to gain insight into the molecular mechanisms underlying diseases and other phenomena, as well as for the development of novel therapeutic strategies.
Molecules that present the binding sites of proteins, which are involved in a disease-associated protein–protein interaction, are promising candidates for therapeutic intervention. Such binding site mimetic molecules can be generated either through recombinant protein synthesis or by means of chemical peptide synthesis. A specific advantage of synthetic peptides is that they can be generated as exact copies of protein fragments as well as in diverse chemical modifications, which include the incorporation of a large range of non-proteinogenic amino acids, as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their potential as drug candidates