In: Finance
Year | Cash Flow |
0 | $2,000 |
1 | $2,000 |
2 | $0 |
3 | $1,500 |
4 | $2,500 |
5 | $4,000 |
Part A:
PV of Annuity:
Annuity is series of cash flows that are deposited at regular
intervals for specific period of time.
PV of Annuity = Cash Flow * [ 1 - [(1+r)^-n]] /r
r - Int rate per period
n - No. of periods
Particulars | Amount |
Cash Flow | $ 400.00 |
Int Rate | 10.000% |
Periods | 10 |
PV of Annuity = Cash Flow * [ 1 - [(1+r)^-n]] /r |
= $ 400 * [ 1 - [(1+0.1)^-10]] /0.1 |
= $ 400 * [ 1 - [(1.1)^-10]] /0.1 |
= $ 400 * [ 1 - [0.3855]] /0.1 |
= $ 400 * [0.6145]] /0.1 |
$ 2,457.83 |
Part B:
FV of Annuity:
Annuity is series of cash flows that are deposited at regular intervals for specific period of time.
FV of Annuity = CF [ (1+r)^n - 1 ] / r
r - Int rate per period
n - No. of periods
Particulars | Amount |
Cash Flow | 400 |
Int Rate | 10.000% |
Periods | 10 |
FV of Annuity = Cash Flow * [ [(1+r)^n ] - 1 ] /r |
=400 * [ [(1+0.1)^10] - 1 ] / 0.1 |
=400 * [ [(1.1)^10] - 1 ] /0.1 |
=400 * [ [2.5937] - 1 ] / 0.1 |
=400 * [1.5937] /0.1 |
6374.97 |
Part C:
Particulars | Amount |
Cash Flow | $ 200.00 |
Int Rate | 5.000% |
Periods | 5 |
PV of Annuity = Cash Flow * [ 1 - [(1+r)^-n]] /r |
= $ 200 * [ 1 - [(1+0.05)^-5]] /0.05 |
= $ 200 * [ 1 - [(1.05)^-5]] /0.05 |
= $ 200 * [ 1 - [0.7835]] /0.05 |
= $ 200 * [0.2165]] /0.05 |
$ 865.90 |
Part D:
Particulars | Amount |
Cash Flow | 200 |
Int Rate | 5.000% |
Periods | 5 |
FV of Annuity = Cash Flow * [ [(1+r)^n ] - 1 ] /r |
=200 * [ [(1+0.05)^5] - 1 ] / 0.05 |
=200 * [ [(1.05)^5] - 1 ] /0.05 |
=200 * [ [1.2763] - 1 ] / 0.05 |
=200 * [0.2763] /0.05 |
1105.13 |
Part E:
FUTure Value:
FV = PV (1+r)^n
Where n is Int rate per period
n - No. of periods
= $ 500 ( 1 + 0.08)^1
= $ 500(1.08^1)
= $ 500*1.08
= $ 540
Part F:
FV = PV (1+r)^n
Where n is Int rate per period
n - No. of periods
= $ 500 ( 1 + 0.08)^5
= $ 500(1.08^5)
= $ 500*1.4693
= $ 734.66
Part G:
PV = FV / (1+r)^n
Where n is Int rate per period
n - No. of periods
= 500 / ( 1+0.08)^1
= 500 / (1.08^1)
= 500 / 1.08
= 462.96
Part H:
PV = FV / (1+r)^n
Where n is Int rate per period
n - No. of periods
= 500 / ( 1+0.08)^5
= 500 / (1.08^5)
= 500 / 1.4693
= 340.29
Part I:
PV = Sum [ CF * PVF(r%, n) ]
Year | CF | PVF @10% | Disc CF |
0 | $ 2,000.00 | 1.0000 | $ 2,000.00 |
1 | $ 2,000.00 | 0.9091 | $ 1,818.18 |
2 | $ - | 0.8264 | $ - |
3 | $ 1,500.00 | 0.7513 | $ 1,126.97 |
4 | $ 2,500.00 | 0.6830 | $ 1,707.53 |
5 | $ 4,000.00 | 0.6209 | $ 2,483.69 |
PV of Cash Flows | $ 9,136.37 |
Part J:
FV = Sum [ CF * FVF(r%, n) ]
Year | Bal Yrs | CF | FVF @10% | FV of CFs |
0 | 5 | $ 2,000.00 | 1.6105 | $ 3,221.02 |
1 | 4 | $ 2,000.00 | 1.4641 | $ 2,928.20 |
2 | 3 | $ - | 1.3310 | $ - |
3 | 2 | $ 1,500.00 | 1.2100 | $ 1,815.00 |
4 | 1 | $ 2,500.00 | 1.1000 | $ 2,750.00 |
5 | 0 | $ 4,000.00 | 1.0000 | $ 4,000.00 |
FV of Cash Flows | $ 14,714.22 |
Part K:
Let X be the Year 0 CF.
Year | Bal Yrs | CF | FVF @10% | FV of CFs |
0 | 5 | X | 1.6105 | 1.6105X |
1 | 4 | $ 2,000.00 | 1.4641 | $ 2,928.20 |
2 | 3 | $ - | 1.3310 | $ - |
3 | 2 | $ 1,500.00 | 1.2100 | $ 1,815.00 |
4 | 1 | $ 2,500.00 | 1.1000 | $ 2,750.00 |
5 | 0 | $ 4,000.00 | 1.0000 | $ 4,000.00 |
FV of Cash Flows | 11493.2 + 1.6105X |
Amount required after 5 Years is 20000
Thus 11493.2 + 1.6105X = 20000
1.6105X = 20000 - 11493.2
= 8506.8
X = 8506.8 / 1.6105
= 5282.09
Pls do rate, if the answer is correct and comment, if any further assistance is required.