In: Statistics and Probability
It has been reported that 42% of college students graduate in 4 years. Consider a random sample of thirty students, and let the random variable X be the number who graduate in 4 years.
Find the probability that 14 or fewer students in the sample graduate in 4 years.
This problem is related to binomial distribution. We will use the exact binomial x~bin(400,0.00825)
The below formulas are used to estimate the number of success and failures in n independent number of trials or experiments
Here, P(x) is the probability of x successes occur in the n number of events, p is the probability of success and q is the probability of failure often denoted by q = (1 - p).
We have find P(X < 14)
P(X < 14) = P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6) + P(7) + P(8) + P(9) + P(10) + P(11) + P(12) + P(13) + P(14)
In this case, n = 30, p = 0.42, q = 1 - 0.42 = 0.58, and x = 14
P(14) = 30C14*(0.42)14*(0.58)(30-14) = (30!/14!*16!)*(0.42)14*(0.58)16 = 0.1267565
P(13) = 30C13*(0.42)13*(0.58)(30-13) = (30!/13!*17!)*(0.42)13*(0.58)17 = 0.1441544
P(12) = 30C12*(0.42)12*(0.58)(30-12) = (30!/12!*18!)*(0.42)12*(0.58)18 = 0.1437730
P(11) = 30C11*(0.42)11*(0.58)(30-11) = (30!/11!*19!)*(0.42)11*(0.58)19 = 0.1253960
P(10) = 30C10*(0.42)10*(0.58)(30-10) = (30!/10!*20!)*(0.42)10*(0.58)20 = 0.0952413
P(9) = 30C9*(0.42)9*(0.58)(30-9) = (30!/9!*21!)*(0.42)9*(0.58)21 = 0.0626303
P(8) = 30C8*(0.42)8*(0.58)(30-8) = (30!/8!*22!)*(0.42)8*(0.58)22 = 0.0353821
P(7) = (30!/7!*23!)*(0.42)7*(0.58)23 = 0.0169951
P(6) = (30!/6!*24!)*(0.42)6*(0.58)24 = 0.0068453
P(5) = (30!/5!*25!)*(0.42)5*(0.58)25 = 0.0022687
P(4) = (30!/4!*26!)*(0.42)4*(0.58)26 = 0.0006025
P(3) = (30!/3!*27!)*(0.42)3*(0.58)27 = 0.0001233
P(2) = (30!/2!*28!)*(0.42)2*(0.58)28 = 0.0000182
P(1) = (30!/1!*29!)*(0.42)1*(0.58)29 = 0.0000017
P(0) = (30!/0!*30!)*(0.42)0*(0.58)30 = 0.0000001
P(X < 14) = 0.1267565 + 0.1441544 + 0.1437730 + 0.1253960 + 0.0952413 + 0.0626303 + 0.0353821 + 0.0169951 + 0.0068453 + 0.0022687 + 0.0006025 + 0.0001233 + 0.0000182 + 0.0000017 + 0.0000001
P(X < 14) = 0.7601885