In: Math
An important application of regression analysis in accounting is in the estimation of cost. By collecting data on volume and cost and using the least squares method to develop an estimated regression equation relating volume and cost, an accountant can estimate the cost associated with a particular manufacturing volume. Consider the following sample of production volumes and total cost data for a manufacturing operation.
Production Volume (units) | Total Cost ($) |
400 | 3,900 |
450 | 4,900 |
550 | 5,300 |
600 | 5,800 |
700 | 6,300 |
750 |
6,900 |
The statistical software output for this problem is:
Simple linear regression results:
Dependent Variable: y
Independent Variable: x
y = 1146.6667 + 7.6 x
Sample size: 6
R (correlation coefficient) = 0.9791271
R-sq = 0.95868988
Estimate of error standard deviation: 241.52295
Parameter estimates:
Parameter | Estimate | Std. Err. | Alternative | DF | T-Stat | P-value |
---|---|---|---|---|---|---|
Intercept | 1146.6667 | 464.15993 | ≠ 0 | 4 | 2.4704129 | 0.0689 |
Slope | 7.6 | 0.78881064 | ≠ 0 | 4 | 9.6347585 | 0.0006 |
Analysis of variance table for regression
model:
Source | DF | SS | MS | F-stat | P-value |
---|---|---|---|---|---|
Model | 1 | 5415000 | 5415000 | 92.828571 | 0.0006 |
Error | 4 | 233333.33 | 58333.333 | ||
Total | 5 | 5648333.3 |
Predicted values:
X value | Pred. Y | s.e.(Pred. y) | 95% C.I. for mean | 95% P.I. for new |
---|---|---|---|---|
500 | 4946.6667 | 114.98792 | (4627.409, 5265.9243) | (4203.9712, 5689.3621) |
Hence,
b1 = 7.6
bo = 1146.7
Estimated regression equation: y = 1146.7 + 7.6 x
Variable cose per unit produced = $ 7.6
Coefficient of determination = 0.959
Percentage of variation explained = 95.9%
Predicted total cost = $ 4947