Question

In: Chemistry

1a- Discuss the vaporization of water in standard condition at 298 K in term of: -A...

1a- Discuss the vaporization of water in standard condition at 298 K in term of: -A exothermicity and endothermicity -Achange of entropy of the system and the surrounding - A spontaneity of the reaction. 1b- Explain how the temperature and the composition of the two phases (liquid and vapour) influence the spontaneity of the vaporization of water. Please show steps and give ample explanation. Thank you

Solutions

Expert Solution

Vaporization of water is an endothermic process. Heat is given to break the intermolecular bonding between the individual water molecules in liquid phase. This interaction is much weaker in the vapor phase. The more ordered arrangement of water molecules in the liquid phase gives it a lower entropy value that is less random state. In vapor phase the degree of randomness is higher and hence the entropy of the system goes up. Molecules move more freely in the vapor phase. As we increase the amount of heat supplied to the system, initially only a small fraction of molecules remain in the vapor phase as opposed to a large number of moelcules in the vapor phase. As time goes, more molecules pass on to the vapor phase and once the composition of vapor to liquid goes up, evaporation process proceeds. At the end most of the liquid water has been transformed into its vapor phase and this results in end of distillation.


Related Solutions

1a- Discuss the vaporization of water in standard condition at 298 K in term of: -...
1a- Discuss the vaporization of water in standard condition at 298 K in term of: - exothermicity and endothermicity - change of entropy of the system and the surrounding - spontaneity of the reaction. 1b- Explain how the temperature and the composition of the two phases (liquid and vapour) influence the spontaneity of the vaporization of water.
1: Discuss the vaporization of water in standard condition at 298 K in term of: -1A...
1: Discuss the vaporization of water in standard condition at 298 K in term of: -1A exothermicity and endothermicity -1B change of entropy of the system and the surrounding -1C spontaneity of the reaction. ------ 2- Explain how the temperature and the composition of the two phases (liquid and vapour) influence the spontaneity of the vaporization of water. Please show steps and give ample explanation. Thank you
The solubility of CO2 in a salt water lake at 298 K and 750 torr pressure...
The solubility of CO2 in a salt water lake at 298 K and 750 torr pressure was found to be 1.0 x 10-5 moles CO2/liter of aqueous solution. The Henry’s Law constant in this case is 3.0 x 10-2 mol/L.atm. A) Please find the partial pressure of CO2 (g) (PCO2, in atm) in the air above the lake. B) Please use your answer to determine the percentage of CO2 in the atmosphere. C) Given the percentage of CO2 in the...
a) The standard enthalpy change for the following reaction is -270 kJ at 298 K. 2HCN...
a) The standard enthalpy change for the following reaction is -270 kJ at 298 K. 2HCN (g) --> 2 C(s, graphite) + H2 (g) + N2 (g) ΔH°  = -270 kJ What is the standard enthalpy change for this reaction at 298 K? C (s, graphite) + 1/2 H2(g) + 1/2 N2(g) ---> HCN(g) _______ kJ
Describe (qualitatively) how standard enthalpy and entropy of vaporization of water will change with temperature?
Describe (qualitatively) how standard enthalpy and entropy of vaporization of water will change with temperature?
A.) The standard enthalpy change for the following reaction is 359 kJ at 298 K. PbCl2(s)...
A.) The standard enthalpy change for the following reaction is 359 kJ at 298 K. PbCl2(s) ----> Pb(s) + Cl2(g)   ΔH° = 359 kJ What is the standard enthalpy change for this reaction at 298 K? Pb(s) + Cl2(g) ----> PbCl2(s) __________ kJ B.) The standard enthalpy change for the following reaction is -602 kJ at 298 K. Mg(s) + 1/2 O2(g) ---->  MgO(s)   ΔH° = -602 kJ What is the standard enthalpy change for the reaction at 298 K? 2...
Water at 298 K discharges from a nozzle and travels horizontally, hitting a flat, vertical wall.
  (Problem 4.3-3) Water at 298 K discharges from a nozzle and travels horizontally, hitting a flat, vertical wall. The nozzle has a diameter of 12 mm and the water leaves the nozzle with a flat velocity profile at a velocity of 6.0 m/s. Neglecting frictional resistance of the air on the jet, calculate the force in newtons on the wall. Ans. –Rx = 4.059 N Repeat Problem 4.3-3 for the same conditions except that the wall is inclined 45°...
The standard enthalpy change for the following reaction is -170 kJ at 298 K. 2 Cu(s)...
The standard enthalpy change for the following reaction is -170 kJ at 298 K. 2 Cu(s) + 1/2 O2(g) Cu2O(s) ΔH° = -170 kJ What is the standard enthalpy change for the reaction at 298 K? 4 Cu(s) + O2(g) 2 Cu2O(s) A student determines the heat of dissolution of solid cobalt(II) chloride using a coffee-cup calorimeter of negligible heat capacity. When 1.33 g of CoCl2(s) is dissolved in 111.00 g of water, the temperature of the solution increases from...
Calculate the standard potential, E°, for this reaction from its equilibrium constant at 298 K. X(s)...
Calculate the standard potential, E°, for this reaction from its equilibrium constant at 298 K. X(s) + Y^2+(aq) ⇌ X^2+(aq) + Y(s)     K= 1.43 x 10^-6     E^o = ? V
Estimatethe total entropy change when 100.g of liquid water, initially at 298 K and 0.50 atm,is...
Estimatethe total entropy change when 100.g of liquid water, initially at 298 K and 0.50 atm,is first heated to boiling at 373 K and 1.00atm, and the steamcollected at 1.00 atmsubsequently heated and compressed to 500Kand20.atm. UseDHvap(at 100 ̊C, 1 atm)= 40.6 kJ/mol and the following values for the heat capacity:CP,m(H2O,l) = 75.2 J/(K mol), CP,m(H2O,g) = 35.0J/(K mol)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT