In: Math
X | Y/1 | Y/0 | |
Years Exp | Successful | Unsccessful | total |
4 | 17 | 83 | 100 |
8 | 40 | 60 | 100 |
12 | 50 | 50 | 100 |
16 | 56 | 44 | 100 |
20 | 96 | 4 | 100 |
The data in tab #2 pertain to the years of experience of project managers and the numbers of successes and failures they have had on major projects. Use the data set given in tab #2 in the attached Excel workbook and logistic regression to find the following:
The probability of success given 10 years of experience is: .
The probability of failure given 18 years of experience is: .
x | p | log (p/(1-p)) |
4 | 0.17 | -1.585627264 |
8 | 0.4 | -0.405465108 |
12 | 0.5 | 0 |
16 | 0.56 | 0.241162057 |
20 | 0.96 | 3.17805383 |
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.912588605 | |||||||
R Square | 0.832817963 | |||||||
Adjusted R Square | 0.777090617 | |||||||
Standard Error | 0.832243508 | |||||||
Observations | 5 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 10.35101 | 10.35100594 | 14.94451 | 0.030613 | |||
Residual | 3 | 2.077888 | 0.692629256 | |||||
Total | 4 | 12.42889 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | -2.766572103 | 0.872864 | -3.169532686 | 0.050499 | -5.54442 | 0.011272 | -5.54442 | 0.011272 |
x | 0.254349734 | 0.065795 | 3.865813184 | 0.030613 | 0.044962 | 0.463738 | 0.044962 | 0.463738 |
ln(p/(1-p)) = -2.7665 + 0.2544 * x
x | ln(p/(1-p) | p |
10 | -0.223074765 | 0.444461 |
18 | 1.811723106 | 0.85957 |
The probability of success given 10 years of experience is: .
= 0.4445
The probability of failure given 18 years of experience is: .
= 1-0.85957
= 0.14043