Question

In: Economics

Suppose the production function for high-quality bourbon is given by Q = (K · L)1/2 where...

Suppose the production function for high-quality bourbon is given by Q = (K · L)1/2 where Q is the output of bourbon per week and L is labor hours per week. Assume that in the short run, K is fixed at 144. Then, the short-run production function becomes:

Q = 12L(1/2)

(A) If the rental rate of capital is $12 and wages are $9 per hour, obtain the short-run total costs function.

(B) If the SMC for this firm is SMC = 0.125q, what would the production level of the firm be at a price of $20 per bottle? (Hint: assume this firm is a price taker).

(C) At the output level you obtained above, how many labors per hour will be hired per week?

Solutions

Expert Solution

(A) Given short run production function :

Rental rate of capital R=$12

Wages W=$9

Capital K is fixed at 144

Labor is represented by L

imply

Short run Total Cost=

Inserting , W=$9 , R=$12 and K=144 in   imply :

So, Short run Total Cost is .

(B) Short run marginal cost given in question is , price P= $12

A price taker firm will produce such that this imply:

Production level of the firm at price $12 per bottle is 96 units.

(C) From part (A) of the question . At production level of 96 units -

At production level of 96 units, 64 labor hours per week will be hired.


Related Solutions

Suppose a production function is given by  F ( K , L ) = K^(1/2) L^(1/2), the...
Suppose a production function is given by  F ( K , L ) = K^(1/2) L^(1/2), the price of capital “r” is $16, and the price of labor “w” is $16. a. (5) What combination of labor and capital minimizes the cost of producing 100 units of output in the long run? b. (5) When r falls to $1, what is the minimum cost of producing 100 pounds of pretzels in the short run? In the long run? c. (5) When...
Suppose that output Q is produced with the production function Q = f(K;L), where K is...
Suppose that output Q is produced with the production function Q = f(K;L), where K is the number of machines used, and L the number of workers used. Assuming that the price of output p and the wage w and rental rate of capital r are all constant, what would the prot maximizing rules be for the hiring of L and K? (b) What is theMRTSK;L for the following production function: Q = 10K4L2? Is this technology CRS, IRS or...
Suppose that output Q is produced with the production function Q = f(K,L), where K is...
Suppose that output Q is produced with the production function Q = f(K,L), where K is the number of machines used, and L the number of workers used. Assuming that the price of output p and the wage w and rental rate of capital r are all constant, what would the profit maximizing rules be for the hiring of L and K? (b) What is the MRTSK,L for the following production function: Q = 10K4L2? Is this technology CRS, IRS...
Suppose a production function is given by  F ( K , L ) = K 1 2...
Suppose a production function is given by  F ( K , L ) = K 1 2 L 1 2, the price of capital “r” is $16, and the price of labor “w” is $16. a. (5) What combination of labor and capital minimizes the cost of producing 100 units of output in the long run? b. (5) When r falls to $1, what is the minimum cost of producing 100 pounds of pretzels in the short run? In the long...
2. Suppose a production function is given by  F ( K , L ) = K 1...
2. Suppose a production function is given by  F ( K , L ) = K 1 2 L 1 2, the price of capital “r” is $16, and the price of labor “w” is $16. a. (5) What combination of labor and capital minimizes the cost of producing 100 units of output in the long run? b. (5) When r falls to $1, what is the minimum cost of producing 100 pounds of pretzels in the short run? In the...
2) Suppose that the production function is given as: q=L^0.75 K^0.25 a) What is the formula...
2) Suppose that the production function is given as: q=L^0.75 K^0.25 a) What is the formula for the average product of labor, AP? in terms of L and K? b) What is the formula for the marginal product of labor, MP? in terms of L and K ? c) If at the current production, cost minimizing level of capital, ?=16, and the market price of labor (?) is three times the rental price of capital (?), what is the cost...
2. A firm’s production function is given by q= L^1/2+ K. The price of labour is...
2. A firm’s production function is given by q= L^1/2+ K. The price of labour is fixed at w = 1, and the price of capital is fixed at r = 8. a. Find the firm’s marginal rate of technical substitution. b. Suppose both labour and capital can be varied by the firm, and that the firm wishes to produce q units of output. Use the answer to (a) to find the cost-minimising amounts of labour and capital (as functions...
Joe’s coffee house operates under the production function Q(L,K) = ln(L^2 ) + K^1/2 , where...
Joe’s coffee house operates under the production function Q(L,K) = ln(L^2 ) + K^1/2 , where L is the number of worker hours and K is the number of coffee machine hours. What happens to the marginal rate of technical substitution as Joe substitutes labor for capital, holding output constant? What does this imply about the shape of the corresponding isoquants? Justify. What happens to the marginal product of labor as Joe uses more labor, holding capital constant? What does...
A plant’s production function is Q = L^1/3 K^2/3, where L is hours of labor and...
A plant’s production function is Q = L^1/3 K^2/3, where L is hours of labor and K is hours of capital. The price of labor services, w, is $40 per hour and of capital services, r, is $10 per hour. a. Derive the long-run expansion path. In words describe what the expansion path represents. b. In the short-run, the plant’s capital is fixed at K = 64. Labor, on the other hand, is variable. How much will it cost to...
Consider a firm whose production is given by Q(K, L) = K^1/3L^1/3, where K and L...
Consider a firm whose production is given by Q(K, L) = K^1/3L^1/3, where K and L are, respectively, the quantities of capital and labour production inputs. Prices of capital and labour are both $1 per unit. (a) Derive and interpret the firm’s demand functions for capital and labour. (b) Derive and interpret the firm’s Long-Run Cost Function. (c) In the long-run, if the firm wished to produce 16 units of output, what quantities of capital and labour would it optimally...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT