Question

In: Physics

A 3.9 kg block of wood sits on a frictionless table. A 3.0 g bullet, fired...

A 3.9 kg block of wood sits on a frictionless table. A 3.0 g bullet, fired horizontally at a speed of 430 m/s , goes completely through the block, emerging at a speed of 200 m/s .

Part A:

Consider a system of both objects. Is momentum conserved in this situation? Explain.

Part B:

For the same system of both objects, is kinetic energy conserved? Explain.

Part C:

What is the speed of the block immediately after the bullet exits? (Note: Just give your final answer here; show your work in Part D.)

Part D:

Suppose that you had a system of just the block, instead of the system that you used in the previous parts. Explain how this would change your approach to parts (B) and (C).

Part E: Suppose that the bullet had instead glanced off the side of the block, so that the bullet ended up going in a direction 30o to one side of its initial trajectory. (For example, if the bullet was initially going east, it ended up going 30o north of east.) Explain how that would change your approach to Parts (B) and (C).

Solutions

Expert Solution


Related Solutions

1.A bullet with a mass of 45 g is fired into a 8.3-kg block of wood...
1.A bullet with a mass of 45 g is fired into a 8.3-kg block of wood resting on a floor against a spring. This ideal spring (k = 76 N/m) has a maximum compression of 28 cm. What was the initial speed of the bullet? 2.Two common and identical carts are used to perform an experiment. Cart A is pushed toward the stationary cart B with a velocity of 2.6 m/s. After the collision, cart A bounces back with a...
A 15 g bullet is fired at 610 m/s into a 4.0 kg block that sits...
A 15 g bullet is fired at 610 m/s into a 4.0 kg block that sits at the edge of a 75-cm- high table. The bullet embeds itself in the block and carries it off the table. How far from the point directly below the table's edge does the block land?
A 10 g bullet is fired with 450 m/s into a 10 kg block that sits...
A 10 g bullet is fired with 450 m/s into a 10 kg block that sits at rest on a wooden table 20 cm from the edge of the table. The bullet gets embedded in the block (perfectly inelastic collision). The block, with the embedded bullet, then slides to the edge of the table and drops down with some initial velocity while leaving the edge of the table. The coefficient of kinetic friction between the block and the surface of...
A 15 g bullet is fired at 650 m/s into a 4.7 kg block that sits...
A 15 g bullet is fired at 650 m/s into a 4.7 kg block that sits at the edge of a 80-cm-high table. The bullet embeds itself in the block and carries it off the table. How far from the point directly below the table's edge does the block land?
A 2.0 kg block sits on a 4.0 kg block that is on a frictionless table....
A 2.0 kg block sits on a 4.0 kg block that is on a frictionless table. The coefficients of friction between the blocks are µs = 0.80 and µk = 0.20. (a) What is the maximum force F that can be applied to the 4.0 kg block if the 2.0 kg block is not to slide? ______N (b) If F is half this value, find the acceleration of each block. ______m/s2 (2.0 kg block) ______m/s2 (4.0 kg block) --Find the...
A(n) 6.7-g bullet is fired from a gun into a 0.90-kg block of wood held in...
A(n) 6.7-g bullet is fired from a gun into a 0.90-kg block of wood held in a vise. The bullet penetrates the block to a depth of 9.00 cm. An identical block of wood (with no bullet inside) is next placed on a frictionless horizontal surface, and a second identical bullet is fired from the same gun into the block. How much smaller is the penetration depth in the second case? (Hint: The depth in the second case should be...
A 12.7 g bullet is fired into a block of wood at 245 m/s. The block...
A 12.7 g bullet is fired into a block of wood at 245 m/s. The block is attached to a spring constant of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass of the wooden block.
A bullet is fired horizontally at a stationary 7.0 kg target. The target sits on a...
A bullet is fired horizontally at a stationary 7.0 kg target. The target sits on a frictionless horizontal surface and is connected to a spring on the backside of the target. The spring has a spring constant of 5000 N/m. The 11.0 g bullet is traveling horizontally at 675 m/s the moment before it strikes the target. After 1 ms, the bullet is embedded into the target and begins to oscillate. Ignore air resistance. (a) Determine the speed of the...
A 0.004 kg bullet is fired into a 0.200 kg wooden block at rest on a...
A 0.004 kg bullet is fired into a 0.200 kg wooden block at rest on a horizontal surface. After impact, the embedded bullet block slides 8.00 m before coming to rest. If the coefficient of friction is 0.400, what is the speed of the bullet before impact? a) 96 m /s b) 112 m/s c) 286 m/s d) 404 m/s e) 812 m/s
A bullet with a mass m b = 11.5 g is fired into a block of...
A bullet with a mass m b = 11.5 g is fired into a block of wood at velocity v b = 265 m/s. The block is attached to a spring that has a spring constant k of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass of the wooden...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT