In: Statistics and Probability
A real estate developer wishes to study the relationship between the size of home a client will purchase (in square feet) and other variables. Possible independent variables include the family income, family size, whether there is a senior adult parent living with the family (1 for yes, 0 for no), and the total years of education beyond high school for the husband and wife. The sample information is reported below.
Family | Square Feet | Income (000s) | Family Size | Senior Parent | Education | ||||||
1 | 2,200 | 60.8 | 2 | 0 | 4 | ||||||
2 | 2,300 | 68.4 | 2 | 1 | 6 | ||||||
3 | 3,400 | 104.5 | 3 | 0 | 7 | ||||||
4 | 3,360 | 89.3 | 4 | 1 | 0 | ||||||
5 | 3,000 | 72.2 | 4 | 0 | 2 | ||||||
6 | 2,900 | 114 | 3 | 1 | 10 | ||||||
7 | 4,100 | 125.4 | 6 | 0 | 6 | ||||||
8 | 2,520 | 83.6 | 3 | 0 | 8 | ||||||
9 | 4,200 | 133 | 5 | 0 | 2 | ||||||
10 | 2,800 | 95 | 3 | 0 | 6 | ||||||
Step | 1 | 2 |
Constant | ||
Family Size | ||
t-statistic | ||
p-value | ||
Income | ||
t-statistic | ||
p-value | ||
S | ||
R-Sq | ||
R-Sq(adj) |
1) The regression line is
y = b1x1 + c
Where y= Square feet Home
b1=slope
x1=Family Size
c=Intercept
In order to perform regression analysis using the data in Excel, follow the below steps
You will get an output as below
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.909178 | |||||
R Square | 0.826605 | |||||
Adjusted R Square | 0.804931 | |||||
Standard Error | 304.9013 | |||||
Observations | 10 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 3545441 | 3545441 | 38.13745 | 0.000266442 | |
Residual | 8 | 743718.6 | 92964.83 | |||
Total | 9 | 4289160 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 1347.31 | 296.3709 | 4.546027 | 0.001884 | 663.8777333 | 2030.743 |
Family Size | 494.4828 | 80.07101 | 6.175553 | 0.000266 | 309.8386673 | 679.1268 |
2) The 2nd regression line is
y = b1x1 + b2x2 + c
Where y= Square feet Home
b1,b2=slope
x1=Family Size
x2=Income
c=Intercept
In order to perform regression analysis using the data in Excel, follow the below steps
You will get an output as below
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.955883 | |||||
R Square | 0.913711 | |||||
Adjusted R Square | 0.889058 | |||||
Standard Error | 229.9396 | |||||
Observations | 10 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 2 | 3919055 | 1959527 | 37.06158 | 0.000188728 | |
Residual | 7 | 370105.4 | 52872.2 | |||
Total | 9 | 4289160 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 793.6913 | 305.4978 | 2.598027 | 0.035527 | 71.30390231 | 1516.079 |
Income | 0.012034 | 0.004527 | 2.65826 | 0.032549 | 0.001329247 | 0.022738 |
Family Size | 327.3406 | 87.17693 | 3.754899 | 0.007122 | 121.199897 | 533.4813 |
3)
The 3rd regression line is
y = b1x1 + b2x2 +b3x3 + c
Where y= Square feet Home
b1,b2,b3=slope
x1=Family Size
x2=Income
x3=Senior Parent
c=Intercept
In order to perform regression analysis using the data in Excel, follow the below steps
You will get an output as below
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.955968 | |||||
R Square | 0.913875 | |||||
Adjusted R Square | 0.870813 | |||||
Standard Error | 248.1276 | |||||
Observations | 10 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 3 | 3919756 | 1306585 | 21.22207 | 0.001351508 | |
Residual | 6 | 369403.8 | 61567.3 | |||
Total | 9 | 4289160 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 803.4015 | 341.9815 | 2.349254 | 0.057117 | -33.3970225 | 1640.2 |
Income | 0.012098 | 0.004922 | 2.457938 | 0.049257 | 5.42723E-05 | 0.024142 |
Family Size | 324.4672 | 97.84777 | 3.31604 | 0.016083 | 85.04229531 | 563.892 |
Senior Parent | -19.1374 | 179.2733 | -0.10675 | 0.918467 | -457.8032799 | 419.5284 |
4)
The 4th regression line is
y = b1x1 + b2x2 +b3x3 +b4x4+ c
Where y= Square feet Home
b1,b2,b3,b4=slope
x1=Family Size
x2=Income
x3=Senior Parent
x4=Education
c=Intercept
In order to perform regression analysis using the data in Excel, follow the below steps
You will get an output as below
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.979802 | |||||
R Square | 0.960012 | |||||
Adjusted R Square | 0.928022 | |||||
Standard Error | 185.2105 | |||||
Observations | 10 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 4 | 4117645 | 1029411 | 30.00944 | 0.001087188 | |
Residual | 5 | 171514.6 | 34302.92 | |||
Total | 9 | 4289160 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 1032.681 | 272.5312 | 3.78922 | 0.012769 | 332.1169712 | 1733.245 |
Income | 0.018712 | 0.004591 | 4.075456 | 0.009582 | 0.006909548 | 0.030515 |
Family Size | 177.188 | 95.36455 | 1.858007 | 0.122284 | -67.9543813 | 422.3304 |
Senior Parent | -64.7315 | 135.1551 | -0.47894 | 0.652192 | -412.1587112 | 282.6958 |
Education | -63.9159 | 26.61113 | -2.40185 | 0.06148 | -132.3219608 | 4.49019 |
Analysis
y=0.019x2+1032.681