In: Statistics and Probability
The following data lists the grades of 6 students selected at random: Mathematics grade: (70, 92, 80, 74, 65, 85) English grade: (69, 88, 75, 80, 78, 90)
a). Find the regression line.
b). Compute and interpret the correlation coefficient.
x |
y |
x^2 |
y^2 |
xy |
70 |
69 |
4900 |
4761 |
4830 |
92 |
88 |
8464 |
7744 |
8096 |
80 |
75 |
6400 |
5625 |
6000 |
74 |
80 |
5476 |
6400 |
5920 |
65 |
78 |
4225 |
6084 |
5070 |
85 |
90 |
7225 |
8100 |
7650 |
sum x |
sum y |
sum x^2 |
sum y^2 |
sum xy |
n |
466.0000 |
480.0000 |
36690.0000 |
38714.0000 |
37566.0000 |
6.0000 |
A)
Slope:
b1={n*sum(xy)- sum(x)*sum(y)}/{n*sum(x^2 )- [sum(x)]^2 }
b1={6*37566 - 466*480}/{6*36690 - [466]^2 }
b1=0.5751
Intercept:
={sum(y)*sum(x^2 )- sum(x)*sum(xy)}/{n*sum(X^2 )- [sum(X)]^2 }
={480*36690 - 466*37566}/{6*36690 - [466]^2 }
=35.3365
Regression equation:
y = bo + b1*x
y = 35.3365 + 0.5751*x
B)
Correlation Coefficient
r={n*sum(XY)- sum(X)*sum(Y)}/{ sqrt(n*sum(x^2 )-[sum(x)]^2 )* sqrt(n*sum(y^2 )-[sum(y)]^2 )}
r={6*37566-466*480}/{ sqrt(6*36690-[466]^2 )* sqrt(6*38714-[480]^2 )}
r=0.7237
The value of correlation Coefficient being 0.72 indicates that there is a strong positive linear relationship between the two variables.