In: Statistics and Probability
Download the dataset returns.xlsx. This dataset records 83 consecutive monthly returns on the stock of Philip Morris (MO) and on Standard & Poor’s 500 stock index, measured in percent. Investors might be interested to know if the return on MO stock is influenced by the movement of the S&P 500 index. Please be aware that return is defined as new price − old price old price × 100%, so it is always reported as a percentage.
1. What is the response and explanatory variable for this dataset?
2. Create a scatterplot between the two variables and describe the form, direction, and strength of the linear relationship between the two variables.
3. Create a residual plot (residuals on y-axis, explanatory variable on x-axis).
4. Based on your answers to parts 2 and 3, are the assumptions for the regression model met? Address the linearity and constant variance assumptions.
5. Verify the values of the following: the sample means of the monthly returns of MO stocks and S&P stocks are 1.8783 and 1.3036 respectively; the sample standard deviations of the monthly returns of MO stocks and S&P stocks are 7.5539 and 3.3915 respectively.
MO | S&P |
-5.7 | -9 |
1.2 | -5.5 |
4.1 | -0.4 |
3.2 | 6.4 |
7.3 | 0.5 |
7.5 | 6.5 |
18.6 | 7.1 |
3.7 | 1.7 |
-1.8 | 0.9 |
2.4 | 4.3 |
-6.5 | -5 |
6.7 | 5.1 |
9.4 | 2.3 |
-2 | -2.1 |
-2.8 | 1.3 |
-3.4 | -4 |
19.2 | 9.5 |
-4.8 | -0.2 |
0.5 | 1.2 |
-0.6 | -2.5 |
2.8 | 3.5 |
-0.5 | 0.5 |
-4.5 | -2.1 |
8.7 | 4 |
2.7 | -2.1 |
4.1 | 0.6 |
-10.3 | 0.3 |
4.8 | 3.4 |
-2.3 | 0.6 |
-3.1 | 1.5 |
-10.2 | 1.4 |
-3.7 | 1.5 |
-26.6 | -1.8 |
7.2 | 2.7 |
-2.9 | -0.3 |
-2.3 | 0.1 |
3.5 | 3.8 |
-4.6 | -1.3 |
17.2 | 2.1 |
4.2 | -1 |
0.5 | 0.2 |
8.3 | 4.4 |
-7.1 | -2.7 |
-8.4 | -5 |
7.7 | 2 |
-9.6 | 1.6 |
6 | -2.9 |
6.8 | 3.8 |
10.9 | 4.1 |
1.6 | -2.9 |
0.2 | 2.2 |
-2.4 | -3.7 |
-2.4 | 0 |
3.9 | 4 |
1.7 | 3.9 |
9 | 2.5 |
3.6 | 3.4 |
7.6 | 4 |
3.2 | 1.9 |
-3.7 | 3.3 |
4.2 | 0.3 |
13.2 | 3.8 |
0.9 | 0 |
4.2 | 4.4 |
4 | 0.7 |
2.8 | 3.4 |
6.7 | 0.9 |
-10.4 | 0.5 |
2.7 | 1.5 |
10.3 | 2.5 |
5.7 | 0 |
0.6 | -4.4 |
-14.2 | 2.1 |
1.3 | 5.2 |
2.9 | 2.8 |
11.8 | 7.6 |
10.6 | -3.1 |
5.2 | 6.2 |
13.8 | 0.8 |
-14.7 | -4.5 |
3.5 | 6 |
11.7 | 6.1 |
1.3 | 5.8 |
As we can see the independent variable or the predictor variable is the S&P index. The dependent variable, response variable or the predicted variable is the returns on the stock of Philip Morris (MO).
So first we calculate the summary statistics:
Regression Statistics | |
Multiple R | 0.525090166 |
R Square | 0.2757196825 |
Adjusted R Square | 0.2667779502 |
Standard Error | 6.468314267 |
Observations | 83 |
We can see the R square value is very low hence the variables are not strongly correlated.
Now seeing the scatter plot with the blue line as the line of best fit and the red points the predicted fit.
Now seeing the residual plot;
Based on the above we can see the residual values for our predicted model;
RESIDUAL OUTPUT | |||
Observation | Predicted MO | Residuals | Standard Residuals |
1 | -10.17216881 | 4.472168807 | 0.6956511264 |
2 | -6.078781251 | 7.278781251 | 1.132222998 |
3 | -0.1141308108 | 4.214130811 | 0.6555130121 |
4 | 7.838736442 | -4.638736442 | -0.7215609183 |
5 | 0.938454561 | 6.361545439 | 0.9895458872 |
6 | 7.955690373 | -0.4556903726 | -0.07088317429 |
7 | 8.657413954 | 9.942586046 | 1.546580972 |
8 | 2.341901723 | 1.358098277 | 0.2112537868 |
9 | 1.406270282 | -3.206270282 | -0.4987391195 |
10 | 5.382703908 | -2.982703908 | -0.4639631067 |
11 | -5.4940116 | -1.0059884 | -0.1564826808 |
12 | 6.31833535 | 0.3816646501 | 0.05936838594 |
13 | 3.043625304 | 6.356374696 | 0.988741572 |
14 | -2.102347624 | 0.1023476241 | 0.0159202935 |
15 | 1.874086003 | -4.674086003 | -0.727059584 |
16 | -4.324472298 | 0.9244722978 | 0.143802755 |
17 | 11.46430828 | 7.735691722 | 1.20329596 |
18 | 0.1197770496 | -4.91977705 | -0.7652771158 |
19 | 1.757132072 | -1.257132072 | -0.1955483748 |
20 | -2.570163345 | 1.970163345 | 0.3064612292 |
21 | 4.447072467 | -1.647072467 | -0.2562040625 |
22 | 0.938454561 | -1.438454561 | -0.2237533015 |
23 | -2.102347624 | -2.397652376 | -0.3729576516 |
24 | 5.031842118 | 3.668157882 | 0.5705862798 |
25 | -2.102347624 | 4.802347624 | 0.7470108303 |
26 | 1.055408491 | 3.044591509 | 0.4735897959 |
27 | 0.7045467006 | -11.0045467 | -1.711770203 |
28 | 4.330118537 | 0.4698814634 | 0.07309061517 |
29 | 1.055408491 | -3.355408491 | -0.5219377436 |
30 | 2.107993863 | -5.207993863 | -0.8101095806 |
31 | 1.991039933 | -12.19103993 | -1.896330623 |
32 | 2.107993863 | -5.807993863 | -0.9034402875 |
33 | -1.751485833 | -24.84851417 | -3.865215651 |
34 | 3.511441025 | 3.688558975 | 0.5737596938 |
35 | 0.002823119415 | -2.902823119 | -0.4515375559 |
36 | 0.4706388402 | -2.77063884 | -0.4309761355 |
37 | 4.797934257 | -1.297934257 | -0.2018952028 |
38 | -1.166716183 | -3.433283817 | -0.5340513424 |
39 | 2.809717444 | 14.39028256 | 2.238425404 |
40 | -0.8158543919 | 5.015854392 | 0.7802220596 |
41 | 0.5875927704 | -0.08759277039 | -0.01362515862 |
42 | 5.499657839 | 2.800342161 | 0.4355965221 |
43 | -2.804071205 | -4.295928795 | -0.6682367848 |
44 | -5.4940116 | -2.9059884 | -0.4520299191 |
45 | 2.692763514 | 5.007236486 | 0.7788815342 |
46 | 2.224947793 | -11.82494779 | -1.83938456 |
47 | -3.037979066 | 9.037979066 | 1.405868291 |
48 | 4.797934257 | 2.002065743 | 0.3114236848 |
49 | 5.148796048 | 5.751203952 | 0.8946065499 |
50 | -3.037979066 | 4.637979066 | 0.7214431074 |
51 | 2.926671374 | -2.726671374 | -0.4241369444 |
52 | -3.973610507 | 1.573610507 | 0.2447769682 |
53 | 0.35368491 | -2.75368491 | -0.4283389317 |
54 | 5.031842118 | -1.131842118 | -0.1760593748 |
55 | 4.914888188 | -3.214888188 | -0.5000796449 |
56 | 3.277533165 | 5.722466835 | 0.8901364575 |
57 | 4.330118537 | -0.7301185366 | -0.1135707985 |
58 | 5.031842118 | 2.568157882 | 0.399479984 |
59 | 2.575809584 | 0.6241904163 | 0.09709355458 |
60 | 4.213164606 | -7.913164606 | -1.230902077 |
61 | 0.7045467006 | 3.495453299 | 0.5437218785 |
62 | 4.797934257 | 8.402065743 | 1.306951224 |
63 | 0.35368491 | 0.54631509 | 0.08497995583 |
64 | 5.499657839 | -1.299657839 | -0.2021633078 |
65 | 1.172362421 | 2.827637579 | 0.4398423564 |
66 | 4.330118537 | -1.530118537 | -0.2380117409 |
67 | 1.406270282 | 5.293729718 | 0.8234458939 |
68 | 0.938454561 | -11.33845456 | -1.763709964 |
69 | 2.107993863 | 0.5920061371 | 0.09208725203 |
70 | 3.277533165 | 7.022466835 | 1.092352989 |
71 | 0.35368491 | 5.34631509 | 0.8316256105 |
72 | -4.792288019 | 5.392288019 | 0.8387767536 |
73 | 2.809717444 | -17.00971744 | -2.645881587 |
74 | 6.43528928 | -5.13528928 | -0.7988002971 |
75 | 3.628394955 | -0.7283949554 | -0.1133026934 |
76 | 9.242183605 | 2.557816395 | 0.3978713535 |
77 | -3.271886926 | 13.87188693 | 2.157788353 |
78 | 7.604828582 | -2.404828582 | -0.3740739189 |
79 | 1.289316352 | 12.51068365 | 1.94605158 |
80 | -4.909241949 | -9.790758051 | -1.522963949 |
81 | 7.370920722 | -3.870920722 | -0.6021262784 |
82 | 7.487874652 | 4.212125348 | 0.65520106 |
83 | 7.137012861 | -5.837012861 | -0.9079542268 |