Question

In: Other

Draw a typical Rankine power cycle, i,e. arrangement of different devices and flow direction. What is...

  1. Draw a typical Rankine power cycle, i,e. arrangement of different devices and flow direction.
  1. What is the physical significance of the second and third viral coefficients
  1. Draw pressure-temperature (PT) phase diagram. Clearly label liquid, vapor, solid regions, triple point, critical point, fusion, vaporization, and sublimation curves.
  1. Write down two characteristics of the ideal gas
  1. Describe what is the standard state of a gas:
  1. Intensive and extensive thermodynamic properties
  1. Equilibrium

Solutions

Expert Solution


Related Solutions

1. The thermal efficiency of a Rankine power cycle may be improved by i. Superheating the...
1. The thermal efficiency of a Rankine power cycle may be improved by i. Superheating the steam ii. Reheating the steam between high and lower pressure sections of the turbine iii. Regenerative Feedwater Heating iv. Insulating the turbine and decreasing the entropy production during the expansion process v. Incorporating a Rankine cycle power system as part of a cogeneration system a. Items i), ii), and iv) only b. Items i), iii), and v) only c. Items ii), iv) and v)...
1. The thermal efficiency of a Rankine power cycle may be improved by i. Superheating the...
1. The thermal efficiency of a Rankine power cycle may be improved by i. Superheating the steam ii. Reheating the steam between high and lower pressure sections of the turbine iii. Regenerative Feedwater Heating iv. Insulating the turbine and decreasing the entropy production during the expansion process v. Incorporating a Rankine cycle power system as part of a cogeneration system a. Items i), ii), and iv) only b. Items i), iii), and v) only c. Items ii), iv) and v)...
a.) What is the thermal efficiency of a steam power plant operating on the Rankine cycle...
a.) What is the thermal efficiency of a steam power plant operating on the Rankine cycle if saturated steam is supplied to the turbine at 1000 psia, and the condenser is at 1 psia. Use a turbine efficiency of 95% and a pump efficiency of 85%. Refer to Chapter 9, Sections 10-11, as necessary. b.) Determine the thermal efficiency if the steam is superheated to 1000 F, assuming all else equal.
A Rankine cycle power plant is being developed to operate an irrigation system. In this power...
A Rankine cycle power plant is being developed to operate an irrigation system. In this power plant solar energy will be used to boil a low boiling point fluid within glazed flat plate solar collectors. The working fluid that has been selected is the commonly used refrigerant R 134a (1, 1, 1, 2 tetrafluoroethane), tabulated properties of which may be found in Tables A11, A12 and A13 at the rear of the prescribed text. The plates being used for the...
A Rankine cycle power plant is being developed to operate an irrigation system. In this power...
A Rankine cycle power plant is being developed to operate an irrigation system. In this power plant solar energy will be used to boil a low boiling point fluid within glazed flat plate solar collectors. The working fluid that has been selected is the commonly used refrigerant R 134a (1, 1, 1, 2 tetrafluoroethane), tabulated properties of which may be found in Tables A11, A12 and A13 at the rear of the prescribed text. The plates being used for the...
Consider the Rankine power cycle using vapor and liquid. a: Explain what kinds of problems the...
Consider the Rankine power cycle using vapor and liquid. a: Explain what kinds of problems the Carnot Vapor Cycle has. b: Draw a T-s diagram for the ideal Rankine cycle and label each process explicitly. c: There is a method to superheat steam to high temperature in order to improve the efficiency of the ideal Rankine cycle. Explain its advantages and disadvantages explicitly. d: Name the gas power cycle which uses the same four processes in its cycle and draw...
The net power of a steam power plant operating according to the simple ideal Rankine cycle...
The net power of a steam power plant operating according to the simple ideal Rankine cycle is 30.5 MW. Water vapor enters the turbine at 7 MPa pressure and 500 ° C, expands to 10 kPa condenser pressure in the turbine. The steam is condensed in the condenser by cooling it with water from a lake. The flow rate of the lake water is 1950 kg / h. Get the pump and turbine adiabatic efficiency of 87%. Show the cycle...
3: Consider the Rankine power cycle using vapor and liquid. a: Explain what kinds of problems...
3: Consider the Rankine power cycle using vapor and liquid. a: Explain what kinds of problems the Carnot Vapor Cycle has. b: Draw a T-s diagram for the ideal Rankine cycle and label each process explicitly. c: There is a method to lower the condenser pressure in order to improve the efficiency of the ideal Rankine cycle. Explain its advantages and disadvantages explicitly. d: Name the gas power cycle which uses the same four processes in its cycle and draw...
. Draw a typical business cycle and identify the four phases of the cycle on your...
. Draw a typical business cycle and identify the four phases of the cycle on your graph. List four macroeconomic variables that are pro-cyclical, and indicate whether each one is a leading, lagging, or coincident indicator.
Consider a steam power plant that operates on a reheat Rankine cycle and has a net...
Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 78 percent and that of the pump is 95 percent. a.)Determine the quality (or temperature, if superheated) of the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT