In: Physics
Question 1: In class, you have seen how to calculate the maximum speed for a car to go around a flat curve (with friction), and for a banked curve (without friction). Here, you will consider the general case. (For each question part below, include a free-body diagram.) a) (3 points) Explain briefly why the car can go around the banked curve safely even without friction, and why that is not the case for the flat curve. b) (5 points) Now consider a curve that is banked so that a car can safely take it at a speed of 85 km/h, even if there were no friction. Assuming the radius of the curve is 68 m, calculate the angle at which it has been built. c) (6 points) For the banked curve, calculate the maximum speed that a car can have to safely go through it if the coefficient of static friction is 0.3. What will happen if the car is faster? d) (6 points) For the same curve, calculate the minimum speed the car must have to safely make it through. What will happen if the car is slower?