In: Statistics and Probability
To study how social media may influence the products consumers buy, researchers collected the opening weekend box office revenue (in millions of dollars) for 23 recent movies and the social media message rate (average number of messages referring to the movie per hour). The data are available below. Conduct a complete simple linear regression analysis of the relationship between revenue (y) and message rate (x).
Click the icon to view the data.
Message_Rate Revenue_($millions)
1369.4 145
1217.5 76
575.9 70
308.1 36
453.2 35
292.7 34
245.8 21
675.6 19
150.8 19
162.2 19
111.1 18
146.2 17
417.2 16
95.5 16
103.6 15
119.8 15
73.8 15
84.8 14
122.3 9
58.9 8
146.4 7
37.5 2
3.9 1
a.The least squares regression equation is y equals=nothing+ (nothing) x
(Round to three decimal places as needed.)
b. Determine the estimate of the standard deviation.
s=nothing
(Round to two decimal places as needed.)
c. Identify the test statistic for the hypotheses, rounding to two decimal places.
t= nothing
d.Identify the p-value.
e.Compute fro r2
f.Use technology to create a 95% confidence interval for the slope β1, rounding to three decimal places
using excel data analysis tool for regression o/p obtained is
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.8955 | |||||||
R Square | 0.8018 | |||||||
Adjusted R Square | 0.7924 | |||||||
Standard Error | 14.4098 | |||||||
Observations | 23 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 17643.9742 | 17643.9742 | 84.9735 | 0.0000 | |||
Residual | 21 | 4360.4606 | 207.6410 | |||||
Total | 22 | 22004.4348 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 3.2974 | 3.9731 | 0.8299 | 0.4159 | -4.9651 | 11.5600 | -4.965148788 | 11.56002995 |
X | 0.0791 | 0.0086 | 9.2181 | 0.0000 | 0.0612 | 0.0969 | 0.061216958 | 0.096884894 |
a)
Y=3.297 + 0.079x
b)
s=14.41
c)
t-stat=9.22
d)
p-value=0.0000
e)
R²=0.8018
f)
95% confidence interval for slope ß1 is (0.061,0.097 )