Question

In: Finance

Consider a bond portfolio, which consists of 1,000 units each of three bonds: Bond A with...

Consider a bond portfolio, which consists of 1,000 units each of three bonds:

  • Bond A with annual coupons, a coupon rate of 7%, maturity of 6 years, and YTM of 6.5%.
  • Bond B, a perpetuity with coupon rate of 7.5%, and YTM of 6.0%.
  • Bond C, a zero-coupon bond with YTM of 6.9% and maturity of 5 year.
  1. Calculate the total current market value of the portfolio.
  2. Calculate the modified duration of the portfolio
  3. What would be the new market value of the portfolio if interest rates were to increase by 60 basis points across board? (use modified duration approach)
  4. Suggest a portfolio adjustment the manager can use to mitigate the portfolio’s exposure to the yield increase.

Solutions

Expert Solution

Assume face value of each bond to be $ 1,000

Market value of bond A = PV (Rate, period, PMT, FV) = PV (6.5%, 6, -7% x 1000, -1000) = $  1,024.2051

Market value of bond B = Coupon / yield = 7.5% x 1000 / 6% = $ 1,250.0000

Market value of Bond C = Face value / (1 + yield)n = 1,000 / (1 + 6.9%)5 = $ 716.3272523

Part (a)

Portfolio comprises of 1,000 units of each of the three bonds.

hence, market value of the portfolio = 1000 x ( 1,024.2051 + 1,250.00 + 716.3272523) = $  2,990,532.32

Part (b)

For Bond A:

Year Cash flows PV of Ct t x Pvt
t Ct PVt = Ct / (1 + 6.5%)^t
1 70                                   65.73          65.73
2 70                                   61.72        123.43
3 70                                   57.95        173.85
4 70                                   54.41        217.65
5 70                                   51.09        255.46
6 1070                                 733.31     4,399.85
Total                              1,024.21     5,235.96

Duration = 5,235.96 / 1,024.21 = 5.11 years

Modified duration = Duration / (1 + yield) = 5.11 / (1 + 6.5%) =  4.80

Modified duration of Bond B = Modified duration of a perpetuity = 1 / yield = 1 /  6% =  16.67

Modified duration of a zero coupon bond = Years to maturity / (1 + yield) = 5 / (1 + 6.%) = 4.68

Hence, modified duration of the portfolio = 9.73 as shown below.

Bond Market Value Number Value in portfolio Proportion Modified duration Proportion x Modified duration
A         1,024.21 1,000 1,024,205 34.25% 4.80 1.64
B         1,250.00 1,000 1,250,000 41.80% 16.67 6.97
C             716.33 1,000 716,327 23.95% 4.68 1.12
Total          2,990,532 9.73

Part (c)

60 basis points = 60 / 100 = 0.6%

%age change in value = -%age change in interest rate x Modified duration = - 0.6% x 9.73 = -5.84%

Hence, the new market value of the portfolio if interest rates were to increase by 60 basis points across board? (use modified duration approach) = 2,990,532 x (1 - 5.84%) = $  2,815,931

Part (d)

Suggest a portfolio adjustment the manager can use to mitigate the portfolio’s exposure to the yield increase.

  • Portfolio manager can undertake a duration hedging. He can introduce new position in the portfolio such that modified duration of the portfolio is zero.
    • Portfolio manager can short bonds in the portfolio
    • Portfolio manager can undertake convexity hedging

Related Solutions

Consider a bond portfolio, which consists of 1,000 units each of three bonds: • Bond A...
Consider a bond portfolio, which consists of 1,000 units each of three bonds: • Bond A with annual coupons, a coupon rate of 7%, maturity of 6 years, and YTM of 6.5%. • Bond B, a perpetuity with coupon rate of 7.5%, and YTM of 6.0%. • Bond C, a zero coupon bond with YTM of 6.9% and maturity of 5 year. a. Calculate the total current market value of the portfolio. b. Calculate the modified duration of the portfolio...
The Johnson Corporation sells 1,000 bonds; each bond has a face (par) valueof $1,000. The Bonds...
The Johnson Corporation sells 1,000 bonds; each bond has a face (par) valueof $1,000. The Bonds are sold on January 1, 2010. The face interest rate of each bond is 4.5%, with interest being paid twice per year, July 1st and January 1st. The bonds are 5-year bonds. The market interest rate (yield) for these types of bonds (securities) at the time the bonds are sold (January 1, 2010) is 4% annually. Requirements: a. What is the total amount of...
Mustafa's portfolio consists of an annuity with monthly payments of $1,000 each month for five years...
Mustafa's portfolio consists of an annuity with monthly payments of $1,000 each month for five years and a $20,000 8% eight-year par-value bond bearing semiannual coupons. Calculate the Macaulay duration of the portfolio at 9%. Show ALL the work with formulas and explanations, should NOT use Microsoft Excel Sheet. Thank you.
Darren is considering adding three one‑year bonds to his portfolio. The face value on each bond...
Darren is considering adding three one‑year bonds to his portfolio. The face value on each bond is equal to $1,000. If the current market interest rate is 44%, determine the present value (PV) of each bond. Enter your answers to two decimal places. Face Value Coupon ABC Bond $ 1,000 4% DEF Bond $ 1,000 5% GHI Bond $ 1,000 3% PV ABC : $ PV GHI: $ PV DEF: $
As with most bonds, consider a bond with a face value of $1,000. The bond's maturity...
As with most bonds, consider a bond with a face value of $1,000. The bond's maturity is 22 years, the coupon rate is 10% paid semiannually, and the discount rate is 14%. What is the estimated value of this bond today?
(Bond valuation​) You are examining three bonds with a par value of ​$1,000 ​(you receive ​$1,000...
(Bond valuation​) You are examining three bonds with a par value of ​$1,000 ​(you receive ​$1,000 at​ maturity) and are concerned with what would happen to their market value if interest rates​ (or the market discount​ rate) changed. The three bonds are Bond Along dash—a bond with 33 years left to maturity that has an annual coupon interest rate of 12 ​percent, but the interest is paid semiannually. Bond Blong dash—a bond with 11 years left to maturity that has...
​(Bond valuation​) You are examining three bonds with a par value of $1,000 ​(you receive $1,000...
​(Bond valuation​) You are examining three bonds with a par value of $1,000 ​(you receive $1,000 at​ maturity) and are concerned with what would happen to their market value if interest rates​ (or the market discount​ rate) changed. The three bonds are: Bond A—a bond with 4 years left to maturity that has an annual coupon interest rate of 8 ​percent, but the interest is paid semiannually. Bond B —a bond with 12 years left to maturity that has an...
Consider the following information: 1) Bonds outstanding: 80,000. Each bond sells at its $1,000 par value....
Consider the following information: 1) Bonds outstanding: 80,000. Each bond sells at its $1,000 par value. The bonds are priced to provide a YTM of 8.6 percent. 2) Stock outstanding: 4 million shares. Current stock price = $40 per share. Book value = $28 per share. Current stock beta = 1.1. 3) The risk-free rate is 4%, the tax rate is 34%, and the expected return on the market portfolio is 12%. What is the weighted average cost of capital...
We have two $1,000 bonds in a portfolio. Bond 1 has a maturity of 10 years,...
We have two $1,000 bonds in a portfolio. Bond 1 has a maturity of 10 years, coupon rate of 7%, semiannual interest Bond 2 has a maturity of 8 years and a coupon rate of 11%, semiannual interest Assume that bond yields of all maturities (ytm) are 6% a. what are the prices(value) of the bonds b. If bond yields drop to 5%, what will happen to the bond prices
An investor has two bonds in her portfolio, Bond C and Bond Z. Each bond matures...
An investor has two bonds in her portfolio, Bond C and Bond Z. Each bond matures in 4 years, has a face value of $1,000, and has a yield to maturity of 9.2%. Bond C pays a 10% annual coupon, while Bond Z is a zero coupon bond. a. Assuming that the yield to maturity of each bond remains at 9.2% over the next 4 years, calculate the price of the bonds at each of the following years to maturity....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT