Question

In: Physics

A circular coil with a radius of 0.4 meters wrapped 47 times is spun at a...

A circular coil with a radius of 0.4 meters wrapped 47 times is spun at a frequency of 21 Hz in a uniform magnetic field to form a generator. It is then connected to the primary transformer. The primary side has 36 turns and the secondary side has 15 turns. The maximum secondary current is 6 amps and the resistance of the coil on the primary side is 3 Ohms. What is the amount of the magnetic field in the generator in milli-Tesla?

Solutions

Expert Solution

Parameters of the circular coil:

Radius R = 0.4 m

Area, A =

Number of turns, N = 47.

Frequency of rotation, f = 21 Hz

Angular frequency,

Let the magnetic flux density through the coil be B.

According to Faraday's law the voltage induced in the coil = (Ignorning the sign due to Lenz's law as is not relevant in the problem)

where, is the magnetic flux linked with the coil and

So,

This coil is connected to the primary transformer:

Primary voltage =

Transformer parameters:

Number of turns in the primary side,

Number of turns in the secondary side,

Resistance on the primary side,

Primary current,

Secondary current,

From transformer relation:

The amount of magnetic field in the generator is 2.42 mT.

Regards


Related Solutions

A submerged circular disk with a radius of 8 meters is oriented vertically such that the...
A submerged circular disk with a radius of 8 meters is oriented vertically such that the top is 4 meter beneath the surface of the water. Find the hydrostatic force on one side of the disk.
A circular coil of 300 turns and radius 10 cm is connected to a current integrator....
A circular coil of 300 turns and radius 10 cm is connected to a current integrator. The total resistance of the circuit is 45 Ω. The plane of the coil is originally aligned perpendicular to the earth’s magnetic field at some point. When the coil is rotated through 90◦ , the charge that passes through the current integrator is measured to be 9.2 µC. Calculate the magnitude of the earth’s magnetic field at that point. Answer in units of µT
To measure a magnetic field produced by an electromagnet, you use a circular coil of radius...
To measure a magnetic field produced by an electromagnet, you use a circular coil of radius 0.30 m with 25 loops (resistance of 0.30 O) that rests between the poles of the magnet and is connected to an ammeter. While the current in the electromagnet is reduced to zero in 1.5 sec, the ammeter in the coil shows a steady reading of 180 mA. Draw a picture of the experimental setup and determine everything you can about the electromagnet.
circular coil consists of 100 turns and has a radius of 20 cm. It is placed...
circular coil consists of 100 turns and has a radius of 20 cm. It is placed in a region of space in which there is a magnetic field of 0.5 T. If the coil is initially perpendicular to the magnetic field, find the magnitude of the emf induced if in 0.2 sec: a) the coil rotates 90 ° b) the coil rotates 180 ° c) The field is reduced to zero
A circular coil (radius = 0.40 m) has 160 turns and is in a uniform magnetic...
A circular coil (radius = 0.40 m) has 160 turns and is in a uniform magnetic field. If the orientation of the coil is varied through all possible positions, the maximum torque on the coil by magnetic forces is 0.16 Nm when the current in the coil is 4.0 mA. What is the magnitude of the magnetic field? 0.50 T 1.6 T 0.21 T 1.2 T 0.37 T
A 11 g circular annulus of outer radius 47 cm and inner radius 35.2 cm makes...
A 11 g circular annulus of outer radius 47 cm and inner radius 35.2 cm makes small oscillations on an axle through its outer edge perpendicular to its face. (a) Find its frequency of oscillation. (b) Find the frequency of oscillation of a thin ring of the same outer radius and mass. (c) Find the frequency of oscillation of a solid disc of the same outer radius, thickness, and density.
A circular coil (830 turns, radius = 0.087 m) is rotating in a uniform magnetic field....
A circular coil (830 turns, radius = 0.087 m) is rotating in a uniform magnetic field. At t = 0 s, the normal to the coil is perpendicular to the magnetic field. At t = 0.021 s, the normal makes an angle of 45o with the field because the coil has made one-eighth of a revolution. An average emf of magnitude 0.075 V is induced in the coil. Find the magnitude of the magnetic field at the location of the...
3. ​ ​Induced Emf ​A circular coil of radius 0.11 m contains a single turn and...
3. ​ ​Induced Emf ​A circular coil of radius 0.11 m contains a single turn and is located in a constant magnetic field of magnitude 0.27 T. The magnetic field has the same direction as the normal to the plane of the coil. The radius increases to 0.30 m in a time of 0.080 s. (a) Determine the magnitude of the emf induced in the coil. (b) The coil has a resistance of 0.70 ?. Find the magnitude of the...
A flat circular coil composed of 120 turns has a radius of 17.0 cm. Perpendicular to...
A flat circular coil composed of 120 turns has a radius of 17.0 cm. Perpendicular to the surface of the coil is a 3.50-T magnetic field. What is the induced emf in this coil, if the magnetic field reverses direction in 0.25 s?
A four-turn circular wire coil of radius 0.550 m lies in a plane perpendicular to a...
A four-turn circular wire coil of radius 0.550 m lies in a plane perpendicular to a uniform magnetic field of magnitude 0.355 T. If the wire is reshaped from a four-turn circle to a two-turn circle in 0.128 s (while remaining in the same plane), what is the average induced emf in the wire during this time?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT