Question

In: Other

does background radiation affect rate constant and impact the order of the reaction? so if the...

does background radiation affect rate constant and impact the order of the reaction? so if the background radiation was recorded as a large number would it affect the rate constant and order of the reaction in an experiment?

Solutions

Expert Solution

The rate constant of a reaction is is given by the expression k=k0exp(-Ea/RT),(Arhenius Equation) where Ea is the activation energy of the reaction and R is universal gas constant and T is the temperature of the reaction vessel.Also the order of a reaction is always fixed and is derived experimentally by performing the rate versus concentration change analysis of the reactant.

Now if we observe the rate constant of reaction is dependent only on temperature since the activation energy is generally independent of temperature and R is constant.So if the reaction is conducted at room temperature or lesser temperature then background radiation will not affect the rate constant.But if the reaction is conducted in a room of higher temperature usully T>1000K then the background radiation may affect the rate.This is because the background radiation will have certain emmisive power and the reaction vessel will have certain absorbtivity and based on these interactions it is quite possible that the reaction temperature may increase the desired temperature and thus the rate constant of reaction will change from the Arhenius equation.

Now,when it comes to order of the reaction ,it is also determined by changing the concentration of species participating in the reaction and by changing the temperature as well.So when we will conduct the experiment,at different temperatures,definitely the rate of reaction as well as rate constant both will change because of the background radiation which will have direct effect on the temperature of reaction vessel.In the case of an elementary step, the order is always equal to the number of reactant particles, so it doesn't depend on temperature and thus background radiation will not affect order for single reactant or elementary step.But,At low temperatures, one term may dominate, while at high temperatures, another might, leading to an apparently change in the approximate overall order of the reaction.So in that case the background radiation can affect the overall order of the reaction.

So the overall conclusion is that Background radiation may affect the order as well as rate constant of the reaction by changing the effective temperature of the reaction vessel.


Related Solutions

you wish to detemine the reaction order and rate constant for the following thermal decomposition reaction...
you wish to detemine the reaction order and rate constant for the following thermal decomposition reaction 2AB2- -> A2 + 2B2 A) what data wolud you collect? B) how would you use this data to determine whether the reaction is zero, first or second order ? C) Describe how you would determin the value of the rate constant?
For the reaction NO + O3 → NO2 + O2 the second order rate constant has...
For the reaction NO + O3 → NO2 + O2 the second order rate constant has a value of 1.8x10^-14 molecule-1 cm3 s-1 at 25°C. The concentration of NO in a relatively clean atmosphere is 0.10 ppbv (parts per billion by volume) and that of O3 is 15 ppbv. Calculate these two concentrations in units of molecule cm-3. Calculate the rate of the NO oxidation using concentration units of molecule cm-3. Show how the rate law may be expressed in...
The rate constant for the 1st order decomposition of N2O5 in the reaction 2N2O5 (g) ...
The rate constant for the 1st order decomposition of N2O5 in the reaction 2N2O5 (g)  4NO2 (g) + O2 (g) is k=3.38x 10-5 s-1 at 25oC. a. What is the half-life of N2O5? b. What will be the total pressure, initially 88.3 kPa for the pure N2O5 vapor, (1) 10s and (2) 10 min after initiation of the reaction? (Hint: partial pressure is proportional to concentration).
What is the rate constant of a first-order reaction that takes 127 seconds for the reactant...
What is the rate constant of a first-order reaction that takes 127 seconds for the reactant concentration to drop to half of its initial value?
A CMFR is operating at steady state with a second order decay reaction of rate constant...
A CMFR is operating at steady state with a second order decay reaction of rate constant k2=0.5 L/mg/d. It is exactly meeting its goal of 99.9% removal efficiency and the allowed maximum effluent concentration of 0.05 mg/L. The volumetric flow rate is 450 m3Id. a. What is the influent concentration in mg/L? b. What is the reactor volume in m3? What volume would be required if the removal efficiency goal were 99.0%? c(5). If the CMFR is replaced with a...
a) A first order reaction is 28.5 % complete in 1908 minutes. Determine the rate constant,...
a) A first order reaction is 28.5 % complete in 1908 minutes. Determine the rate constant, k, for the reaction b) A first order reaction has a of 136.25 minutes. Determine how much time will be required for 39.5% of the original material to decompose. c) It took 62.43 days for 50% of a substance to decompose. If the reaction follows first order kineticsdetermine the value of the rate constant, k in s-1.
The reaction 2A →B is second order in A with a rate constant of 35.1 M−1...
The reaction 2A →B is second order in A with a rate constant of 35.1 M−1 · s−1 at 25°C. (a) Starting with [A]0 = 0.00781 M, how long will it take for the concentration of A to drop to 0.00180 M? s (b) Calculate the half-life of the reaction for [A]0 = 0.00781 M. s (c) Calculate the half-life of the reaction for [A]0 = 0.00269 M.   s 2. Given the same reactant concentrations, the reaction CO(g) + Cl2(g)...
The first-order rate constant for the reaction of methyl chloride (CH3Cl) with water to produce methanol...
The first-order rate constant for the reaction of methyl chloride (CH3Cl) with water to produce methanol (CH3OH) and hydrochloric acid (HCl) is 3.32 × 10−10 s−1 at 25°C. Calculate the rate constant at 50.3°C if the activation energy is 116 kJ/mol.
The rate constant for a first order reaction is 0.060s-1. when the temperature is increased from...
The rate constant for a first order reaction is 0.060s-1. when the temperature is increased from 298K to 367 K , the rate constant increases to 0.18s-1. Calculate the activation energy for this reaction. Use kJ/mol for the units. The activation energy in kJ/mol equals (include the units in your answer):
Determine the reaction order and the rate constant for the following data set: Time (s) 0...
Determine the reaction order and the rate constant for the following data set: Time (s) 0 50 100 150 200 250 Concentration (M) 0.01000 0.00887 0.00797 0.00723 0.00662 0.00611
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT