Question

In: Statistics and Probability

R studio. The file I read contains the lower and upper bound of 10,000 98% confidence...

R studio.

The file I read contains the lower and upper bound of 10,000 98% confidence intervals for a population mean. All intervals are constructed from samples of size 30 from the same population.

As a comment, how many of the 10,000 intervals do we expect to contain the true population mean?

Use if else function to determine if the true population mean of 50 is contained in each interval. If an interval contains the true population mean , then record a 1. otherwise, record 0. use another simple function to count the number of intervals that actually contain the true population mean.

            LB       UB
1     48.82272 51.30366
2     47.85011 50.75911
3     48.39593 50.86317
4     49.50380 51.82882
5     48.56808 51.10763
6     48.33720 51.15795
7     49.58479 52.30173
8     48.06352 50.64677
9     46.97609 49.91360
10    48.23880 50.92644
11    48.20511 51.27409
12    48.94604 51.21771
13    49.14323 52.10076
14    48.34674 50.72505
15    47.99025 51.17251
16    49.31222 52.24073
17    48.42335 50.85923
18    48.55645 51.30947
19    48.66502 50.89891
20    48.31210 51.02289
21    48.65195 51.29623
22    48.57981 51.35273
23    49.28317 51.80582
24    48.53978 51.50162
25    48.68356 51.59459
26    48.60266 50.80870
27    48.53445 51.66937
28    48.72546 51.39291
29    47.44066 50.02556
30    48.52205 51.17847
31    48.73524 51.25268
32    48.50100 50.80092
33    48.38974 51.32582
34    49.23366 52.03479
35    48.73807 51.57349
36    48.83860 50.91037
37    48.59342 51.48773
38    49.03301 50.72731
39    48.78176 51.50024
40    48.26298 50.92905
41    48.65888 51.77052
42    48.43509 50.55117
43    49.67746 51.93227
44    48.93457 51.67466
45    47.97452 50.60386
46    48.43416 50.94204
47    48.46911 51.29342
48    47.99619 51.16726
49    48.54371 51.22938
50    47.76050 50.69209
51    48.01145 50.30868
52    47.70307 50.69561
53    49.16509 52.34635
54    49.42015 52.14595
55    48.25789 50.99127
56    48.40341 51.27524
57    49.01722 51.93094
58    49.96117 52.26430
59    48.16817 51.05651
60    49.17935 51.74603
61    48.89957 51.92129
62    48.10730 50.28900
63    48.59000 52.22029
64    48.53050 51.10354
65    48.45223 50.88710
66    49.21200 51.57518
67    48.55665 51.44040
68    48.95475 51.55773
69    48.94291 51.38004
70    47.90089 50.99178
71    48.50173 50.94314
72    48.45513 51.11692
73    47.90871 50.89449
74    47.70506 51.22094
75    48.33921 50.64114
76    50.02632 52.15664
77    48.09500 50.58005
78    48.88905 51.30580
79    48.46436 50.98724
80    47.85269 50.48144
81    47.65872 51.12160
82    48.89871 51.30326
83    48.75556 50.76731
84    48.78316 51.05772
85    48.55003 51.01114
86    47.71575 50.52735
87    49.37902 51.87349
88    47.87913 50.74057
89    48.23371 51.17239
90    48.06149 50.39318
91    48.93308 51.46548
92    49.21280 51.71634
93    48.59412 51.39782
94    49.67277 51.84224
95    49.28704 52.08790
96    48.72638 51.70117
97    48.31556 50.61340
98    48.61119 51.68274
99    49.18080 51.53544
100   47.61227 50.16820
101   48.82926 51.20851
102   48.31915 51.27786
103   48.14510 51.61156
104   48.43267 50.78132
105   48.28254 51.32600
106   48.39814 51.30264
107   47.95319 50.62435
108   49.83925 52.51739
109   48.35944 51.01766
110   48.57429 51.38465
111   48.55923 51.07643
112   48.95902 50.99336
113   47.95920 50.80227
114   48.60200 51.73162
115   48.09973 50.74910
116   48.85072 51.05844
117   48.78941 51.81272
118   47.94201 50.71102
119   48.51234 51.15113
120   48.67375 51.63517
121   48.64139 51.68602
122   47.75612 50.46703
123   48.67059 51.42052
124   48.09576 51.07715
125   49.37720 52.23383
126   49.43083 52.08122
127   48.50562 51.39762
128   48.99931 51.33532
129   47.63214 50.55941
130   48.52189 51.22927
131   48.29439 50.69421
132   49.30644 51.87455
133   47.42131 50.25915
134   49.16207 51.60797
135   50.01296 52.94989
136   49.10513 51.46615
137   48.77741 50.80060
138   48.24382 50.86109
139   47.68605 51.39100
140   48.53876 51.30355
141   49.11038 51.43809
142   48.92087 52.21191
143   48.40823 51.00876
144   48.35416 50.78246
145   49.00370 51.59688
146   48.83742 51.30304
147   49.38288 51.54634
148   48.52638 50.89307
149   48.43147 50.96575
150   49.51156 52.45901
151   48.30947 50.75264
152   48.65666 52.06264
153   47.53873 50.62694
154   48.97277 51.59316
155   47.89711 50.74558
156   48.59672 51.03416
157   49.01263 51.49236
158   49.54921 51.65144
159   47.83151 50.55320
160   49.31743 52.20174
161   49.42357 51.98323
162   49.03040 51.46993
163   48.04456 50.76240
164   48.75804 52.12364
165   47.64634 50.50156
166   48.80462 52.17708
167   48.83134 51.48767
168   48.21504 50.97351
169   48.81646 52.00578
170   48.15212 51.04534
171   49.72071 52.74574
172   48.65917 51.59945
173   48.34740 50.68027
174   49.42349 51.82766
175   47.76089 50.64166
176   49.44961 51.52234
177   49.12248 51.00450
178   48.25620 51.53334
179   48.79215 51.33376
180   49.41500 52.14297
181   48.17524 50.47328
182   48.66058 51.90062
183   48.20894 50.83547
184   48.64847 51.87457
185   49.15202 51.35655
186   48.45635 51.58770
187   48.21649 50.78333
188   48.13771 51.19793
189   48.41331 50.74956
190   50.03155 52.35838
191   49.58294 52.14418
192   47.25417 50.11865
193   48.84927 51.52156
194   48.88043 51.67025
195   47.99342 50.35937
196   48.86192 51.29783
197   47.45850 50.18512
198   49.59162 52.47297
199   48.87785 51.32875
200   47.90418 50.04092
201   49.83806 52.19935
202   47.69015 50.71301
203   48.09299 51.35362
204   49.17409 51.45369
205   48.80720 51.51675
206   49.45134 51.58023
207   48.44732 51.60204
208   48.51654 51.54519
209   48.94422 51.30512
210   49.58301 51.93820
211   47.97123 49.95980
212   47.47083 50.26808
213   47.80895 50.71045
214   48.64762 51.39270
215   49.02379 51.34965
216   48.41929 51.11002
217   48.44066 50.80170
218   49.00728 51.26125
219   48.33492 51.43666
220   49.52027 52.13383
221   48.85290 51.36695
222   49.23361 51.54561
223   49.17813 51.56875
224   48.41697 51.64245
225   47.88436 50.67827
226   48.93780 52.23120
227   49.55336 51.98197
228   48.29684 50.64537
229   48.98134 51.38557
230   48.20767 51.55897
231   49.25277 51.68138
232   47.96149 50.68632
233   48.96494 51.31722
234   48.86132 51.88765
235   48.26054 50.58916
236   48.59627 50.83939
237   48.26988 50.75478
238   48.47282 50.73504
239   48.88159 51.50583
240   49.20482 51.38266
241   49.50121 51.87642
242   49.10054 51.39124
243   48.92478 51.41669
244   48.26964 51.10945
245   48.43229 51.38427
246   48.16820 50.87966
247   48.38549 51.67114
248   49.23977 51.78047
249   49.64792 52.02347
250   49.04561 52.43617
251   48.98915 51.96953
252   48.77861 51.72435
253   49.34512 52.20400
254   48.77097 51.04397
255   48.44165 51.04354
256   48.01325 51.40037
257   48.82503 51.87068
258   49.02115 51.62762
259   48.30087 50.99395
260   48.10411 50.73797
261   48.82529 51.58163
262   49.01528 51.79095
263   48.79496 51.47613
264   47.96925 51.12558
265   49.62587 52.30828
266   49.22415 50.97231
267   49.38396 51.13713
268   48.51912 50.64159
269   48.33830 50.10063
270   49.38432 52.25062
271   48.34578 51.08557
272   49.23433 51.62159
273   49.28289 51.40681
274   49.17267 51.53598
275   48.56442 51.36944
276   48.28537 51.14154
277   48.81525 51.64292
278   48.42813 50.64870
279   49.24045 52.49323
280   48.62801 51.17991
281   47.94672 51.14264
282   48.30132 51.06298
283   50.05754 51.89577
284   49.37244 52.31054
285   48.35175 50.25944
286   47.95359 50.54685
287   48.63321 51.32578
288   48.84791 51.40400
289   49.06524 51.22998
290   48.82153 51.12875
291   49.31704 51.66836
292   48.85663 51.32540
293   48.20009 50.69489
294   48.16190 51.17043
295   49.55253 52.43455
296   48.69902 51.39729
297   48.82556 51.57249
298   48.76276 51.17254
299   48.86948 51.28091
300   48.72766 51.21970
301   48.44610 51.11079
302   48.00021 50.15543
303   49.42880 51.87595
304   48.58219 50.68780
305   50.07464 52.52340
306   48.31237 50.82119
307   49.23674 52.15685
308   49.42942 52.33765
309   48.11667 51.25361
310   47.84972 50.15164
311   47.44239 50.09728
312   48.35219 50.85891
313   49.33312 52.02076
314   48.06922 51.28937
315   48.93060 51.09046
316   47.83314 50.86894
317   48.09463 50.47688
318   47.91868 51.02247
319   48.73552 51.46030
320   49.04664 52.14535
321   48.97470 51.59980
322   48.80350 51.50556
323   48.08633 50.98626
324   48.76969 51.54197
325   48.20972 50.91649
326   48.87603 51.61202
327   48.05395 51.02859
328   48.90004 51.40396
329   48.08102 50.98926
330   48.92682 51.26975
331   48.07960 50.98550
332   48.45479 50.91147
333   49.30655 51.16616
334   49.57019 51.62665
335   49.59756 52.21105
336   49.27978 52.07583
337   49.02587 51.67876
338   49.05640 51.75095
339   49.41067 51.64558
340   47.71828 50.16604
341   47.88478 50.46554
342   49.37218 51.41576
343   47.60982 50.60973
344   48.81343 51.39902
345   48.34318 50.66721
346   48.58661 51.27513
347   48.74877 50.99491
348   48.41430 51.36293
349   49.01001 51.39993
350   49.06977 51.38908
351   49.15311 51.89894
352   48.29487 51.09689
353   48.86584 51.11819
354   49.89577 52.54236
355   48.91982 51.93447
356   48.59579 51.03624
357   49.29968 52.15329
358   49.12660 51.95624
359   48.38123 51.11630
360   49.04480 51.38700
361   48.50068 51.26122
362   48.16140 50.89996
363   48.86531 51.00114
364   47.00044 49.50477
365   49.06123 52.79876
366   48.81461 51.06214
367   49.59537 52.40065
368   48.41697 51.15690
369   49.56054 52.75075
370   48.05078 50.22665
371   49.29852 51.89714
372   47.35272 50.38037
373   47.86439 50.97649
374   48.27598 51.42949
375   49.23040 51.85370
376   48.11987 51.59977
377   47.89244 50.06745
378   48.92912 51.78426
379   47.90229 50.70529
380   48.79054 51.41679
381   48.70002 51.72568
382   49.18605 51.83708
383   48.95085 51.36403
384   49.24485 52.40337
385   48.19895 50.55362
386   48.52274 50.98295
387   48.35110 51.04053
388   48.78496 51.74919
389   48.60546 51.53101
390   48.79854 51.38634
391   48.66749 51.69851
392   47.79454 51.13213
393   49.22741 51.64429
394   48.13613 50.35030
395   48.76199 51.20824
396   48.17696 50.29663
397   48.99561 51.43026
398   49.38308 51.84759
399   48.15648 50.93732
400   48.02939 51.03028
401   48.57095 51.66393
402   48.67521 51.14010
403   47.85850 50.81717
404   49.27910 51.96977
405   49.00061 51.89358
406   48.97423 52.04610
407   49.27063 51.47028
408   48.69118 51.36288
409   48.71507 51.30883
410   48.13450 51.29541
411   48.85440 51.23987
412   48.52115 50.61469
413   48.55738 51.10016
414   48.78731 50.97615
415   49.01520 51.40252
416   48.25358 50.38346
417   48.18268 50.83626
418   48.59212 51.70159
419   47.51140 50.77303
420   47.31718 50.58834
421   48.82820 52.08861
422   48.24191 51.19371
423   48.38576 51.04301
424   48.59165 50.95777
425   48.58854 51.46934
426   48.04972 50.96441
427   48.25358 50.98370
428   48.97992 51.93969
429   48.76633 51.48820
430   48.72649 51.60702
431   48.26235 50.81540
432   48.73850 51.28282
433   48.01231 50.81824
434   48.50689 51.18325
435   48.41178 51.23206
436   48.52354 51.16599
437   49.11342 51.65564
438   49.68061 52.14200
439   48.32455 50.25582
440   48.85609 51.27603
441   49.14751 51.74516
442   48.47412 50.92351
443   48.71494 51.17900
444   48.00950 50.64196
445   49.20432 51.32977
446   49.24168 51.61824
447   48.35331 51.30285
448   49.05033 51.33215
449   48.76081 50.83013
450   48.72853 51.40939
451   49.40518 52.01238
452   49.38355 52.07482
453   49.36536 51.46615
454   48.61344 51.64655
455   48.55320 50.87193
456   49.54888 52.55029
457   48.79097 51.02604
458   47.06805 50.27794
459   48.12485 50.41138
460   48.61695 51.19227
461   48.13602 51.00126
462   48.82556 51.34675
463   49.05779 51.92811
464   49.57418 51.75850
465   48.09423 50.61218
466   48.02291 50.43108
467   48.40567 50.98923
468   48.55689 51.39618
469   49.01564 51.12879
470   48.91510 51.61181
471   48.73073 51.57080
472   48.53983 51.37197
473   48.63880 51.43618
474   49.28973 51.74833
475   48.44200 51.20024
476   49.31388 51.64599
477   48.72383 51.40989
478   49.14558 51.62147
479   48.14565 50.89550
480   49.44831 52.32590
481   47.95923 50.63820
482   48.44001 50.97196
483   49.35966 52.04062
484   48.60488 51.55164
485   49.04828 51.31570
486   48.45293 50.90125
487   49.03894 51.81015
488   49.67828 52.66242
489   48.69551 51.71400
490   48.53864 51.40861
491   48.72995 51.34008
492   48.61452 51.02528
493   48.20427 50.95025
494   48.53882 51.74698
495   48.81162 51.62866
496   48.44266 51.29633
497   49.72625 52.37027
498   48.61004 51.04595
499   49.20746 51.71339
500   48.10826 51.22831
 [ reached getOption("max.print") -- omitted 9500 rows ]

Solutions

Expert Solution

We expect 98% of the 10,000 intervals to contain the true population mean.

Using Rstudio

data<-read.csv("Confidence_Interval.csv",sep="\t")
head(data)
data$Truth<-ifelse(data$LB<50 & data$UB>50 ,1,0)
table(data$Truth)


Related Solutions

Write a program in JAVA that prompts the user for a lower bound and an upper...
Write a program in JAVA that prompts the user for a lower bound and an upper bound. Use a loop to output all of the even integers within the range inputted by the user on a single line.
Given the data listed in the table, calculate the lower and upper bound for the 95%...
Given the data listed in the table, calculate the lower and upper bound for the 95% confidence interval for the mean at X = 7. The regression equation is given by y^ = b0 + b1x. Regression Statistics Statistic Value b0 4.3 b1 0.50 x 5.36 se 3.116 SSX 25.48 SST 58.25 n 40 Give your answers to 2 decimal places. You may find this Student's t distribution table useful. a) Lower bound = b)Upper bound =
Given the integral 1/x dx upper bound 2 lower bound 1 (a) use simpson's rule to...
Given the integral 1/x dx upper bound 2 lower bound 1 (a) use simpson's rule to approximate the answer with n=4 Formula:f(x)=1/3[f(x0)+4f(x1)+2f(x2)+...+f(xn)]Δx(keep answer to 6 decimals) b)how large is n in order for the error of Simpsons rule for the given integral is no more than 0.000001 Formula: |Es|=(k)(b-a)^5/(180 n^4), where |f^4(x)≤k| please show all work and steps
Define the greatest lower bound for a set A ⊂ R. Let A and B be...
Define the greatest lower bound for a set A ⊂ R. Let A and B be two non-empty subsets of R which are bounded below. Show glb(A ∪ B) = min{glb(A), glb(B)}.
Write matlab program to compute ∫f(x)dx lower bound a upper bound b using simpson method and...
Write matlab program to compute ∫f(x)dx lower bound a upper bound b using simpson method and n points. Then, by recomputing with n/2 points and using richardson method, display the exact error and approximate error. (Test with a=0 b=pi f(x)=sin(x))
Please find the Lower AND Upper bound of the above number set: 36, 52, 60, 60,...
Please find the Lower AND Upper bound of the above number set: 36, 52, 60, 60, 62, 65, 65, 65, 70, 72, 74, 75, 75, 76, 76, 78, 79, 79, 80, 80, 82, 83, 84, 85, 88, 90, 90, 92, 95, 98, 99 (NOTE: The answer is not 36 nor 42 for low bound nor 81.37 nor 110 for the upper bound. These were incorrect answers.)
Prove that the Ramsey number R(3,4) = 9 by showing that both the lower bound and...
Prove that the Ramsey number R(3,4) = 9 by showing that both the lower bound and the upper bound is 9.
I want this to be solved using R studio or R software, please. Here is the...
I want this to be solved using R studio or R software, please. Here is the example: The data in stat4_prob5 present the performance of a chemical process as a function of sever controllable process variables. (a) Fit a multiple regression modelrelating CO2product (y) to total solvent (x1) and hydrogen consumption (x2) and report the fitted regression line. (b) Find a point estimatefor the variance term σ2. (c) Construct the ANOVA tableand test for the significance of the regression using...
What is a lower bound for the price of a three–month i) European call and ii)...
What is a lower bound for the price of a three–month i) European call and ii) European put option on a non–dividend–paying stock when the stock price is $18, the strike price is $15, and the risk–free interest rate is 6% per annum continuous compounding?
The dataset ’anorexia’ in the MASS package in R-Studio contains data for an anorexia study. In...
The dataset ’anorexia’ in the MASS package in R-Studio contains data for an anorexia study. In the study, three treatments (Treat) were applied to groups of young female anorexia patients, and their weights before (Prewt) and after (Postwt) treatment were recorded. The three treatments adminstered were no treatment (Cont), Cognitive Behavioural treatment (CBT), and family treatment (FT). Determine at the 5% significance level if there is a difference in mean weight gain between those receiving no treatment and those receiving...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT