Question

In: Physics

In a series oscillating RLC circuit, R=16.0Ω, C=1.2μF,L=.20mH, and ε=εmsinωdt with εm=45.0Vandωd=3000rad/s. For time t=0.442ms find...

In a series oscillating RLC circuit, R=16.0Ω, C=1.2μF,L=.20mH, and ε=εmsinωdt with εm=45.0Vandωd=3000rad/s. For time t=0.442ms find (a) the ratePg at which energy is being suppliedby the generator, (b) the rate Pc atwhich the energy in the capacitor is changing, and (d) the rate PRat which energy is being dissipated in the resistor.

Solutions

Expert Solution

I hope you understood the problem and got your answers, If yes rate me!! or else comment for a better solutions.


Related Solutions

In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L =...
In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L = 8.80 mH, and E = Emsinωdt with Em = 44.8 V and ωd = 2900 rad/s. For time t = 0.434 ms find (a) the rate Pg at which energy is being supplied by the generator, (b) the rate PC at which the energy in the capacitor is changing, (c) the rate PL at which the energy in the inductor is changing, and (d)...
In a series oscillating RLC circuit, R =16.0 W, C =5.0 mF, L =20.0 mH, and...
In a series oscillating RLC circuit, R =16.0 W, C =5.0 mF, L =20.0 mH, and e=emsin (wt) with em =45.0 V and frequency of oscillation is 50 Hz. For time t= 0.4 s find (a) the rate PCat which the energy in the capacitor is changing, and (b) the rate PRat which energy is being dissipated in the resistor.
An RLC circuit with R = 23.8 Ω , L = 327 mH , and C...
An RLC circuit with R = 23.8 Ω , L = 327 mH , and C = 45.7 μF is connected to an ac generator with an rms voltage of 25 V A: Determine the average power delivered to this circuit when the frequency of the generator is equal to the resonance frequency. B: Determine the average power delivered to this circuit when the frequency of the generator is twice the resonance frequency C: Determine the average power delivered to...
We have a RLC series circuit. On this circuit V=100+j0 volts R=10ohm, L=85mH and C=1uF regarding...
We have a RLC series circuit. On this circuit V=100+j0 volts R=10ohm, L=85mH and C=1uF regarding to this values; * What should F0 has to be for making this circuit work at resonance position? * What is XL value with using F0 frequency? * What is XC value with using F0 frequency? * What is I value when the circuit is at resonance position? * What are voltages on VR, VXL, and VXC components when the circuit is on resonance...
An RLC circuit has L = 250 mH, C = 0.200 ?F, and R = 2.00...
An RLC circuit has L = 250 mH, C = 0.200 ?F, and R = 2.00 k?. What is the angular frequency of its damped oscillations?
An RLC circuit, with R = 12 Ω, L = 1 H, C = 0.01 f,...
An RLC circuit, with R = 12 Ω, L = 1 H, C = 0.01 f, connects to a 20 V source. If the switch is initially off and turns on after 10 seconds, staying on for 20 seconds , to then be permanently disconnected, also at the beginning consider that the capacitor is discharged and that the current is zero. Determine: a) The accumulated charge on the capacitor for t = 8sec b) The accumulated charge in the capacitor...
Let L = {x = a r b s c t | r + s =...
Let L = {x = a r b s c t | r + s = t, r, s, t ≥ 0}. Give the simplest proof you can that L is not regular using the pumping lemma.
In a series R-L-C circuit, R= 360 ohm , L= 0.410 H and C= 1.1*10^-2 micro...
In a series R-L-C circuit, R= 360 ohm , L= 0.410 H and C= 1.1*10^-2 micro F. 1.What is the resonance angular frequency of the circuit? 2. The capacitor can withstand a peak voltage of 550 V. If the voltage source operates at the resonance frequency, what maximum voltage amplitude can it have if the maximum capacitor voltage is not exceeded?
Find the steady-state current ip(t) in an LRC-series circuit when L = 1 2 h, R...
Find the steady-state current ip(t) in an LRC-series circuit when L = 1 2 h, R = 20 Ω, C = 0.001 f, and E(t) = 100 sin(60t) + 200 cos(40t) V. ip(t)
Find the steady-state current ip(t) in an LRC-series circuit when L = 1/2 h, R =...
Find the steady-state current ip(t) in an LRC-series circuit when L = 1/2 h, R = 20 Ω, C = 0.001 f, and E(t) = 100 sin(60t) + 300 cos(40t) V.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT