In: Economics
COST & PRODUCTION FUNCTIONS
In order to reduce unit cost, the CEO of ABC Corporation has to decide whether to increase or decrease total production. A marketing analyst has reported the following information about ABC Corporation’s cost and production structure:
Year |
Total Cost (TC) ($1000) |
Quantity Produced (Q) (Unit) |
2018 |
2 |
10 |
2019 |
4 |
15 |
2020 |
6 |
35 |
1.Use Ordinary Least Squares Method (OLS) to estimate the ABC Corporation’s total cost function; that is, TC =β +βQ;
2. What is ABC Co’s marginal cost?
3. What is ABC Co’s fixed cost?
4. Calculate the scale elasticity at the mean of the data
5. In order to reduce the unit cost would you recommend an increase or a decrease in total production? Why?
1)
The OLS regression to estimate total cost function TC = b1 +b2Q is:
Year | Total Cost (TC) ($1000) |
Quantity Produced (Q) (Unit) |
SUMMARY OUTPUT | |||||||||
2018 | 2 | 10 | ||||||||||
2019 | 4 | 15 | Regression Statistics | |||||||||
2020 | 6 | 35 | Multiple R | 0.944911183 | ||||||||
R Square | 0.892857143 | |||||||||||
Adjusted R Square | 0.785714286 | |||||||||||
Standard Error | 0.9258201 | |||||||||||
Observations | 3 | |||||||||||
ANOVA | ||||||||||||
df | SS | MS | F | Significance F | ||||||||
Regression | 1 | 7.142857143 | 7.142857143 | 8.333333333 | 0.212295615 | |||||||
Residual | 1 | 0.857142857 | 0.857142857 | |||||||||
Total | 2 | 8 | ||||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||||
Intercept | 1.142857143 | 1.124858268 | 1.016001016 | 0.49494725 | -13.14982231 | 15.43553659 | -13.14982231 | 15.43553659 | ||||
Quantity Produced (Q) (Unit) |
0.142857143 | 0.049487166 | 2.886751346 | 0.212295615 | -0.485936919 | 0.771651205 | -0.485936919 | 0.771651205 |
Hence, the TC = 1.14285714285714 + 0.142857142857143*Q
2.
The marginal cost is: dTC/dQ = 0.142857142857143
3.
The fixed cost is the cost when Q=0, that is, Total Fixed Cost = 1.14285714285714
4.
The scale elasticity at mean Q =20 and TC = 4 is:
(dTC/dQ)*(Q/TC)
= 0.142857142857143*(20/4) = 0.714285714
5.
The per unit Cost = TC/Q = (1.14285714285714/Q) + 0.142857142857143
Thus, in order to reduce the unit cost, the firm should increase the production, as with Q increasing, TC/Q = per-unit cost decreases