Question

In: Statistics and Probability

The BMI pf American men between ages 30 and 50 is normally distributed with a mean...

The BMI pf American men between ages 30 and 50 is normally distributed with a mean of 27.2 and a standard deviation of 5.1

Determine the z-score and percentile of a BMI of 30?

If an American male belonged to a BMI percentile of 40% what would be his z score?

If a BMI of 25 or greater signifies overweight and a BMI of 30 or greater signifies obese what precentage of Americans are overweight? obese?

Solutions

Expert Solution

Let X denote the BMI of these American men. Then .

The z score is obtained for a value by first deducting the mean from it and then dividing it by the standard deviation.

The z-score of a BMI of 30 is:

                                         

Let his z-score be x. Then if an American male belongs to the 40% percentile we have:

                                            

We can look this up in a table or use a calculator. This gives x=-0.253.

The percentage of Americans that are overweight are given by

                       

Thus, the required percentage of overweight American men is: 66.69%

The percentage of Americans that are obese are given by

                       

Thus, the required percentage of overweight American men is: 29.15%


Related Solutions

The ages of a group of 50 women are approximately normally distributed with a mean of...
The ages of a group of 50 women are approximately normally distributed with a mean of 51 years and a standard deviation of 6 years. One woman is randomly selected from the​ group, and her age is observed. a. Find the probability that her age will fall between 56 and 61 years. b. Find the probability that her age will fall between 48 and 51 years. c. Find the probability that her age will be less than 35 years ....
3. Assume that the body weights of American men are normally distributed and have a mean...
3. Assume that the body weights of American men are normally distributed and have a mean of 182 pounds and a standard deviation of 20 pounds. a) If you select just one man at random, what is the probability that he weighs between 151 and 171 pounds? (Use Table 8.1) b) According to the Rule of Sample Means, if multiple random samples of 25 men are collected and the sample mean weight is calculated for each sample, what should the...
The heights of men are normally distributed with a mean of 68.6 in and a standard...
The heights of men are normally distributed with a mean of 68.6 in and a standard deviation of 2.8 in. If a man is randomly selected, find the probability that his height is at least 71 in.
The ages of commercial aircraft are normally distributed with a mean of 13.5 years and a...
The ages of commercial aircraft are normally distributed with a mean of 13.5 years and a standard deviation of 7.8 years. What percentage of individual aircraft have ages greater than 15​years? Assume that a random sample of 81 aircraft is selected and the mean age of the sample is computed. What percentage of sample means have ages greater than 15 ​years?The percentage of individual aircraft that have ages greater than 15 years is _____ ​%
the ages of commercial aircraft are normally distributed with a mean of 13.0 years and a...
the ages of commercial aircraft are normally distributed with a mean of 13.0 years and a standard deviation of 7.7159 years. what percentage of individual aircraft have ages between 10 years and 16 years? assume that a random sample of 49 aircraft is selected and the mean age of the sample is computed. what percentage of sample means have ages between 10 years and 16 years?
The ages of commercial aircraft are normally distributed with a mean of 13.013.0 years and a...
The ages of commercial aircraft are normally distributed with a mean of 13.013.0 years and a standard deviation of 8.11428.1142 years. What percentage of individual aircraft have ages between 1010 years and 1616 ​years? Assume that a random sample of 8181 aircraft is selected and the mean age of the sample is computed. What percentage of sample means have ages between 1010 years and 1616 ​years?
The ages of commercial aircraft are normally distributed with a mean of 13.5 years and a...
The ages of commercial aircraft are normally distributed with a mean of 13.5 years and a standard deviation of 8.2933 years. What percentage of individual aircraft have ages between 10 years and 16 ​years? Assume that a random sample of 81 aircraft is selected and the mean age of the sample is computed. What percentage of sample means have ages between 10 years and 16 years?
A) Body mass index (BMI) in children is approximately normally distributed with a mean of 24.5...
A) Body mass index (BMI) in children is approximately normally distributed with a mean of 24.5 and a standard deviation of 6.2. A BMI between 25 and 30 is considered overweight. What proportion of children are overweight? (Hint: p[25<x<30]. Answer in 0.0000 format, NOT in percentage format. Round to 4 decimal places) B) If BMI larger than 30 is considered obese, what proportion of children are obese? (Answer in 0.0000 format, NOT in percentage format. Round to 4 decimal places)....
9. The heights of a population of 100,000 men are normally distributed with a mean of...
9. The heights of a population of 100,000 men are normally distributed with a mean of 68 inches and standard deviation of 3. About how many men have heights (a) below 64 inches? (b) above 74 inches? (c) between 62 and 74 inches? 10. Assume that the scores on the Graduate Record Exam (GRE) are normally distributed with a mean of 500 and a standard deviation of 115. (a) Find the percentage of students who scored at least 600. (b)...
It is estimated that heights of adult men are normally distributed with a mean of 70...
It is estimated that heights of adult men are normally distributed with a mean of 70 inches and a standard deviation 3.3 inches. In one state, the law requires a person to be 68 inches or taller to become a fire fighter. What proportion of adult men will meet this height requirement for becoming a fire fighter in this state? .7291 A person who was denied to become a fire fighter learned that his height was at the 20th percentile....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT