Question

In: Advanced Math

Using the Chinese remainder theorem solve for x: x = 1 mod 3 x = 5...

Using the Chinese remainder theorem solve for x:

x = 1 mod 3

x = 5 mod 7

x = 5 mod 20

Please show the details, I`m trying to understand how to solve this problem since similar questions will be on my exam.

Solutions

Expert Solution


Related Solutions

a. Solve 7x + 5 ≡ 3 (mod 19). b. State and prove the Chinese Remainder Theorem
a. Solve 7x + 5 ≡ 3 (mod 19). b. State and prove the Chinese Remainder Theorem c. State and prove Euler’s Theorem. d. What are the last three digits of 9^1203? e. Identify all of the primitive roots of 19. f. Explain what a Feistel system is and explain how to decrypt something encoded with a Feistel system. Prove your result.
Using the constructive proof of the Chinese Remainder Theorem, find the unique x(mod 100) satisfying the...
Using the constructive proof of the Chinese Remainder Theorem, find the unique x(mod 100) satisfying the congruences x ≡ 1(mod 25), x ≡ 0(mod 4).
1. Use backward substitution to solve: x=8 (mod 11) x=3 (mod 19)
  1. Use backward substitution to solve: x=8 (mod 11) x=3 (mod 19) 2. Fine the subgroup of Z24 (the operation is addition) generates by the element 20. 3. Find the order of the element 5 in (z/7z)
Use the remainder theorem to find the remainder when f(x) is divided by x-1. Then use...
Use the remainder theorem to find the remainder when f(x) is divided by x-1. Then use the factor theorem to determine whether x-1 is a factor of f(x). f(x)=4x4-9x3+14x-9 The remainder is ____ Is x-1 a factor of f(x)=4x4-9x3+14x-9? Yes or No
Prove the following more general version of the Chinese Remainder Theorem: Theorem. Let m1, . ....
Prove the following more general version of the Chinese Remainder Theorem: Theorem. Let m1, . . . , mN ∈ N, and let M = lcm(m1, . . . , mN ) be their least common multiple. Let a1, . . . , aN ∈ Z, and consider the system of simultaneous congruence equations    x ≡ a1 mod m1 . . . x ≡ aN mod mN This system is solvable for x ∈ Z if and...
The Chinese Remainder Theorem for Rings. Let R be a ring and I and J be...
The Chinese Remainder Theorem for Rings. Let R be a ring and I and J be ideals in R such that I + J = R. (a) Show that for any r and s in R, the system of equations x ≡ r (mod I) x ≡ s (mod J) has a solution. (b) In addition, prove that any two solutions of the system are congruent modulo I ∩J. (c) Let I and J be ideals in a ring R...
Given f(x)=2x3-7x2+9x-3, use the remainder theorem to find f(-1)
Given f(x)=2x3-7x2+9x-3, use the remainder theorem to find f(-1)
Solve a system of equations: 1- 2x = 5 mod 15   3x = 1 mod 4...
Solve a system of equations: 1- 2x = 5 mod 15   3x = 1 mod 4 2- x = 5 mod 15 x = 2 mod 12 (Hint: Note that 15 and 12 are not relatively prime. Use the Chinese remainder theorem to split the last equation into equations modulo 4 and modulo 3)
Solve the following system of congruences: x ≡ 2 (mod 14) x ≡ 16 (mod 21)...
Solve the following system of congruences: x ≡ 2 (mod 14) x ≡ 16 (mod 21) x ≡ 10 (mod 30)
3. Find the quotient and remainder using long division. x3 + 7x2 − x + 1...
3. Find the quotient and remainder using long division. x3 + 7x2 − x + 1 x + 8 quotient = ? remainder = ? 4. Simplify using long division. (Express your answer as a quotient + remainder/divisor.) f(x) = 8x2 − 6x + 3 g(x) = 2x + 1 5. Find the quotient and remainder using long division. 9x3 + 3x2 + 22x 3x2 + 5 quotient remainder     6. Use the Remainder Theorem to evaluate P(c). P(x) = x4...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT