In: Statistics and Probability
A magazine tested LCD televisions. The table below shows the overall quality score and cost in hundreds of dollars. Use the rank correlation coefficient to test for a correlation between the two variables. Use a significance level of a=0.05.Based on these results, can you expect to get higher quality by purchasing a more expensive LCD television?
Quality |
75 |
71 |
67 |
64 |
63 |
60 |
57 |
54 |
54 |
53 |
51 |
|
|||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cost |
21 |
24 |
32 |
19 |
18 |
14 |
21 |
19 |
16 |
14 |
18 |
Determine the null and alternative hypotheses for this test.
Determine the correlation coefficient.
X | Y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) |
75 | 21 | 201.124 | 1.860 | 19.339 |
71 | 24 | 103.669 | 19.041 | 44.430 |
67 | 32 | 38.215 | 152.860 | 76.430 |
64 | 19 | 10.124 | 0.405 | -2.025 |
63 | 18 | 4.760 | 2.678 | -3.570 |
60 | 14 | 0.669 | 31.769 | 4.612 |
57 | 21 | 14.579 | 1.860 | -5.207 |
54 | 19 | 46.488 | 0.405 | 4.339 |
54 | 16 | 46.488 | 13.223 | 24.793 |
53 | 14 | 61.124 | 31.769 | 44.066 |
51 | 18 | 96.397 | 2.678 | 16.066 |
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 669 | 216 | 623.636 | 258.5 | 223.272727 |
mean | 60.82 | 19.64 | SSxx | SSyy | SSxy |
sample size ,n =11
here, x̅ =60.82,ȳ =19.636
SSxx = Σ(x-x̅)² = 623.64
SSxy=Σ(x-x̅)(y-ȳ) =223.3
correlation coefficient , r = Sxy/√(Sx.Sy) =0.5560
correlation hypothesis test
Ho:ρ = 0
Ha:ρ ╪ 0
n=11
alpha,α = 0.05
correlation , r=0.5560
t-test statistic = t = r*√(n-2)/√(1-r²) = 2.0070
p-value = 0.0757 [excel function: =t.dist.2t(2.007,9) ]
p-value >α=0.05, fail to reject null hypothesis
Fail to reject the null hypothesis. There is insufficient evidence to support a claim of a correlation between quality and price