In: Statistics and Probability
A magazine tested LCD televisions. The table below shows the overall quality score and cost in hundreds of dollars. Use the rank correlation coefficient to test for a correlation between the two variables. Use a significance level of a=0.05.Based on these results, can you expect to get higher quality by purchasing a more expensive LCD television?
| 
 Quality  | 
 75  | 
 71  | 
 67  | 
 64  | 
 63  | 
 60  | 
 57  | 
 54  | 
 54  | 
 53  | 
 51  | 
  | 
|||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 
 Cost  | 
 21  | 
 24  | 
 32  | 
 19  | 
 18  | 
 14  | 
 21  | 
 19  | 
 16  | 
 14  | 
 18  | 
||||||||||||||||
Determine the null and alternative hypotheses for this test.
Determine the correlation coefficient.
| X | Y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) | 
| 75 | 21 | 201.124 | 1.860 | 19.339 | 
| 71 | 24 | 103.669 | 19.041 | 44.430 | 
| 67 | 32 | 38.215 | 152.860 | 76.430 | 
| 64 | 19 | 10.124 | 0.405 | -2.025 | 
| 63 | 18 | 4.760 | 2.678 | -3.570 | 
| 60 | 14 | 0.669 | 31.769 | 4.612 | 
| 57 | 21 | 14.579 | 1.860 | -5.207 | 
| 54 | 19 | 46.488 | 0.405 | 4.339 | 
| 54 | 16 | 46.488 | 13.223 | 24.793 | 
| 53 | 14 | 61.124 | 31.769 | 44.066 | 
| 51 | 18 | 96.397 | 2.678 | 16.066 | 
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 669 | 216 | 623.636 | 258.5 | 223.272727 | 
| mean | 60.82 | 19.64 | SSxx | SSyy | SSxy | 
sample size ,n =11
here, x̅ =60.82,ȳ =19.636
SSxx = Σ(x-x̅)² = 623.64
SSxy=Σ(x-x̅)(y-ȳ) =223.3
correlation coefficient , r = Sxy/√(Sx.Sy) =0.5560
correlation hypothesis test
Ho:ρ = 0
Ha:ρ ╪ 0
n=11
alpha,α = 0.05
correlation , r=0.5560
t-test statistic = t = r*√(n-2)/√(1-r²) = 2.0070
p-value = 0.0757 [excel function: =t.dist.2t(2.007,9) ]
p-value >α=0.05, fail to reject null hypothesis
Fail to reject the null hypothesis. There is insufficient evidence to support a claim of a correlation between quality and price