Question

In: Chemistry

a chef prepares 350mL of simple syrup by dissolving 240g if sucrose (MW = 342 g/mol)...

a chef prepares 350mL of simple syrup by dissolving 240g if sucrose (MW = 342 g/mol) in 250mL of water (density = 1.0g/mL). calculate the concentration of sucrose in the resulting solution in each of the units below.

1. g/L

2. M (molarity)

3. m (molaity)

4. X (mole fraction)

Solutions

Expert Solution


Related Solutions

Calculate the vapor pressure of a 20 % by mass sucrose (MW= 342.30 g/mol) solution. The...
Calculate the vapor pressure of a 20 % by mass sucrose (MW= 342.30 g/mol) solution. The vapor pressure of pure water is 23.8 torr. A) 23.50 torr B) 1.40 torr C) 23.8 torr D) 0.987 torr E) 4.44 torr
A 0.7257 g mixture of KCN (MW = 65.116 g/mol) and NaCN (MW = 49.005 g/mol)...
A 0.7257 g mixture of KCN (MW = 65.116 g/mol) and NaCN (MW = 49.005 g/mol) was dissolved in water. AgNO3 was added to the solution, precipitating all the CN– in solution as AgCN (MW = 133.886 g/mol). The dried precipitate weighed 1.650 g. Calculate the weight percent of KCN and NaCN in the original sample.
A solution is obtained by dissolving 171.2 g of sucrose (i = 1) with 360.4 g...
A solution is obtained by dissolving 171.2 g of sucrose (i = 1) with 360.4 g of H 2 O at 55 ºC. Sucrose is a non-volatile solute. The water vapor pressure at 55ºC is 118.1 torr. The molar mass of sucrose is 342.3 g / mol and H 2 O is 18.02 g / mol. To calculate the mole fraction, it is necessary to calculate the  total moles . The result of this computation is: Calculate the vapor pressure on...
A solution of sucrose is prepared by dissolving 0.5 g in 100 g of water. Calculate:...
A solution of sucrose is prepared by dissolving 0.5 g in 100 g of water. Calculate: a. Percent weight in weight b. The molal concentration of sucrose and water c. The mole fraction of sucrose and water in the solution
A pharmacist is asked to formulate the simple syrup containing 55% (w/v) of sucrose. Answer the...
A pharmacist is asked to formulate the simple syrup containing 55% (w/v) of sucrose. Answer the following questions regarding the compounding of this formulation: a) Can this formulation be considered self-preserving? explain your answer b) How much alcohol USP is required to add to this formulation if the prescription calls for 750 mL of the syrup. Show calculations.
A) A solution is prepared by dissolving 50.7 g sucrose (C12H22O11) in 0.423 kg of water....
A) A solution is prepared by dissolving 50.7 g sucrose (C12H22O11) in 0.423 kg of water. The final volume of the solution is 355 mL. 1) For this solution, calculate molarity. 2) For this solution, calculate molality. 3) For this solution, calculate percent by mass. 4) For this solution, calculate mole fraction. B) Calculate the vapor pressure at 25 ∘C of a solution containing 55.2 g ethylene glycol (HOCH2CH2OH) and 286.6 g water. The vapor pressure of pure water at...
A solution is prepared by dissolving 50.7 g sucrose (C12H22O11) in 0.394 kg of water. The...
A solution is prepared by dissolving 50.7 g sucrose (C12H22O11) in 0.394 kg of water. The final volume of the solution is 355 mL. calculate: a- molarity b- molality c- percent by mass d- mole fraction
A sample containing a mixture of SrCl2·6H2O (MW = 266.62 g/mol) and CsCl (MW = 168.36...
A sample containing a mixture of SrCl2·6H2O (MW = 266.62 g/mol) and CsCl (MW = 168.36 g/mol) originally weighs 1.7215 g. Upon heating the sample to 320 °C, the waters of hydration are driven off SrCl2·6H2O, leaving the anhydrous SrCl2. After cooling the sample in a desiccator, it has a mass of 1.2521 g. Calculate the weight percent of Sr, Cs, and Cl in the original sample.
If you are given the following solids: Na3PO4             MW = 163.94 g/mol K3PO4                  MW = 212.26
If you are given the following solids: Na3PO4             MW = 163.94 g/mol K3PO4                  MW = 212.26 g/mol    NaH2PO4           MW = 119.98 g/mol K2HPO4             MW = 174.17 g/mol Na2HPO4           MW = 141.96 g/mol KH2PO4             MW = 136.08 g/mol Which compounds would you use to prepare your stock solutions? Why? I picked KH2PO4 and K2HPO4 because potassium salts dissolve more readily in H2O which would make the lab go more smoothly. I would like to know if I'm missing any...
A solution is prepared by dissolving 50.8 g sucrose(C12H22O11) in 0.387 kg of water. The final...
A solution is prepared by dissolving 50.8 g sucrose(C12H22O11) in 0.387 kg of water. The final volume of the solution is 355 mL. For this solution, calculate molarity. For this solution, calculate molality. For this solution, calculate percent by mass. For this solution, calculate mole fraction.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT