Question

In: Physics

suppose you conduct an experiment where you shine plane waves of light through a small slit....

suppose you conduct an experiment where you shine plane waves of light through a small slit. how would the intensity graph of this experiment differ than that of a double slit of similar width?

Solutions

Expert Solution

Both in double and single slits, there is a difference in the interference pattern. Two separate wavefronts originate from two coherent sources (separate slits in this case). Secondary wavelets originating from different parts of the same wavefront constitute diffraction.
The region of minimum intensity is perfectly dark in double slit, with alternating bands of maxima and minima. The fringes (bright (maxima) or dark bands (minima)) are of equal width in double slit, whereas in single slit the pattern is that there is a central maximum fringe, which has 2 x the width of the subsidiary maxima; also, the intensity of all positions of maxima are of the same intensity in a double slit, however the intensity decreases successively along the subsidiary maxima from the central maximum fringe.


Related Solutions

In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an...
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an interference pattern on the screen at a distance L from the slits. What statement is true for the resulting interference pattern if the frequency of the light increases? OPTIONS: The distance between maxima stays the same.T he distance between maxima increases. The distance between maxima decreases. Not enough information given.
Suppose that you shine light from a laser through two slits that are placed one in...
Suppose that you shine light from a laser through two slits that are placed one in front of the other, separated by 0.6mm. The width of each slit is 0.12mm. The light will travel from the laser, through the slits, and onto a screen 1.5m away. a. Predict what you will observe on the screen, and compare it to what you would expect from single-slit diffraction. b. If ray (geometrical optics) accurately described this siutation, what would the pattern on...
An experiment is conducted in which red light is diffracted through a single slit.
An experiment is conducted in which red light is diffracted through a single slit.Then, each of the following alterations to the original experiment is made, one at a time, and the experiment is repeated. After each alteration, the experiment isreturned to its original configuration.A The slit width is halved.B The distance between the slits and the screen is halved.C The slit width is doubled.D A green, rather than red, light source is used.E The experiment is conducted in a water-filled...
In procedure 2: suppose red light passes through a double slit and falls on a screen....
In procedure 2: suppose red light passes through a double slit and falls on a screen. In the diffraction pattern, the distance from the central maximum to the first maximum is 5 mm. a) The distance from the first minimum (dark spot) to the second minimum in the diffraction pattern is between 7.5 mm and 10 mm less than 2.5 mm     more than 10 mm between 2.5 mm and 5 mm exactly 2.5 mm between 5 mm and 7.5 mm...
Explain the concept of Interference of Light Waves for double slit problems to a grade 12...
Explain the concept of Interference of Light Waves for double slit problems to a grade 12 classmate who was absent from class. Use visual aids and examples.
In a double-slit interference experiment you are asked to use laser light of different wavelengths and...
In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with: 1. yellow light. 2. red light. 3. blue...
A 0.100 mm-wide slit is illuminated with plane waves from a helium-neon laser of wavelength 0.699...
A 0.100 mm-wide slit is illuminated with plane waves from a helium-neon laser of wavelength 0.699 microns. Find the distance from the zeroth-order maximum to the first two irradiance nulls in mm when the pattern is observed on a wall Z=1.0m away.
Light of unknown wavelength passes through a double slit, yielding both double slit and diffraction patterns...
Light of unknown wavelength passes through a double slit, yielding both double slit and diffraction patterns on a screen that is 1 m away from the slits. You see that the 9th double-slit maximum coincides with the 2nd single-slit diffraction minimum. You also observe that the first diffraction minimum is located 3 cm from the central axis on the screen. (a) What is the ratio of double-slit separation to single slit width, d/a? (b) If d = 72 µm, what...
In a Young's double-slit experiment the wavelength of light used is 462 nm (in vacuum), and...
In a Young's double-slit experiment the wavelength of light used is 462 nm (in vacuum), and the separation between the slits is 2.1 × 10-6 m. Determine the angle that locates (a) the dark fringe for which m = 0, (b) the bright fringe for which m = 1, (c) the dark fringe for which m = 1, and (d) the bright fringe for which m = 2.
In a Young's double-slit experiment the wavelength of light used is 469 nm (in vacuum), and...
In a Young's double-slit experiment the wavelength of light used is 469 nm (in vacuum), and the separation between the slits is 2.1 × 10-6 m. Determine the angle that locates (a) the dark fringe for which m = 0, (b) the bright fringe for which m = 1, (c) the dark fringe for which m = 1, and (d) the bright fringe for which m = 2.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT