We have,
(15) =
(3•5) =
(3)•
(5)
= 2•4 = 8
So, by Euler's theorem,
13
(15)
1
(mod 15)
So, 13 8
1
(mod 15)
So, (138)106
1
(mod 15)
So, 13848
1
(mod 15)
Again, 13
-2
(mod 15)
So, (13)⁴
(-2)⁴
16
1
(mod 15)
So, 13852
13848 • 13⁴
1
(mod 15)
And, 7
(15)
1
(mod 15)
So, 78
1
(mod 15)
So, (78)113
1
(mod 15)
So, 7904
1
(mod 15)
Again, 7²
49
4
(mod 15)
So, (7²)²
7⁴
4²
16
1
(mod 15)
So 7908
7904 • 7⁴
1
(mod 15)
So, we have, 13852
7908 (mod 15) (proved)