Question

In: Mechanical Engineering

Consider an axisymmetric pipe flow simulation. The pipe is 40 m long in axial direction and...

Consider an axisymmetric pipe flow simulation. The pipe is 40 m long in axial direction and its radius is 0.2 m. The structured mesh is used in the computational domain and it is uniformly spaced by 1000 cells in axial direction and 20 cells in radial direction. The simulation is conducted in transient and the time step size was set to 0.001 second. After running the simulation for a long time, the flow has reached a fully developed condition. The maximum axial velocity along the axis is found to be 15 m/s. The fluid is a liquid water where its density is 1000 kg/m3 and its dynamic viscosity is 0.001 kg/m-s. What is the maximum Courant number in the domain? DO NOT USE scientific notation (5 * 10^-6) or E-notation (or engineering notation, e.g. 5E-6).

Solutions

Expert Solution


Related Solutions

An axial flow fan has a hub diameter of 1.50 m and a tip diameter of...
An axial flow fan has a hub diameter of 1.50 m and a tip diameter of 2.0 m. It rotates at 18 rad/s and when handling 5.0?^(3)s^(-1) of air, develops a theoretical head equivalent to 17mm of water. Determine the blade outlet and inlet angles at the hub and the tip. Assume that the velocity of flow is independent of radius and that the energy transfer per unit length of blade is constant. Assume density of air is1.2 kg/m^3
An axial flow fan 1.83 m diameter is designed to run at a speed of 1400 rev/min with an average axial air velocity of 12.2 m/s
An axial flow fan 1.83 m diameter is designed to run at a speed of 1400 rev/min with an average axial air velocity of 12.2 m/s. A quarter scale model has been built to obtain a check on the design and the rotational speed of the model fan is 4200 rev/min. Determine the axial air velocity of the model so that dynamical similarity with the full-scale fan is preserved. The effects of Reynolds number change may be neglected. A sufficiently large...
Standing sound waves are produced in a pipe that is 2.00 m long. Part A If...
Standing sound waves are produced in a pipe that is 2.00 m long. Part A If the pipe is open at both ends , determine the locations along the pipe (measured from the left end) of the displacement nodes for the fundamental frequency. Part B If the pipe is open at both ends, determine the locations along the pipe (measured from the left end) of the displacement nodes for the first overtone. Part C If the pipe is open at...
8.8. Consider blood flow in a vessel (i.e., a pipe with a porous wall that is...
8.8. Consider blood flow in a vessel (i.e., a pipe with a porous wall that is permeable to blood). The radius and length of the vessel are R and L, respectively. In general, the flow is axisymmetric, the fluid velocity has both radial and axial components that are usually determined numerically. However, there are two approximate solutions to this problem. One is to use lubrication theory to determine the relationship between the flow rate and the pressure gradient in the...
A sing-around sensor outputs frequency 40 Hz. Knowing that the average flow rate in the pipe...
A sing-around sensor outputs frequency 40 Hz. Knowing that the average flow rate in the pipe is Q= 40 l/min and the pipe radius is 2cm. What would be the distance between the emitting and receiving wires?
Exercise 16.25 Standing sound waves are produced in a pipe that is 1.20 m long.  ...
Exercise 16.25 Standing sound waves are produced in a pipe that is 1.20 m long.   Part A For the fundamental overtone, determine the locations along the pipe (measured from the left end) of the displacement nodes if the pipe is open at both ends? Enter your answers in ascending order separated by commas. x = 0.600   m   SubmitMy AnswersGive Up Correct Part B For the fundamental overtone, determine the locations along the pipe (measured from the left end) of...
A pipe, 900 m long and 200 mm in diameter discharges water to the atmosphere at...
A pipe, 900 m long and 200 mm in diameter discharges water to the atmosphere at a point 10 m below the inlet level. With an inlet pressure of 40 kPa gauge, the flow rate is 40 litres/sec. At a point half way between the pipe inlet and outlet, a new tapping is made from which water is taken at a rate of 18 litres/sec. To what value must the inlet pressure be raised in order to maintain the same...
A 30 m long pipe with an outside diameter of 75 mm is used to deliver...
A 30 m long pipe with an outside diameter of 75 mm is used to deliver steam at a rate of 2000 kg / hour. The vapor pressure is 198.53 kPa entering the pipe with a quality of 98%. The pipe needs to be given insulation with thermal conductivity of 0.2 W / (m K) so that the vapor quality only slightly decreases to 95%. The outer surface temperature of the insulation is assumed to be 25 ° C. Ignore...
Question 7 An axial flow water Kaplan turbine operates under a head of 2.5 m while...
Question 7 An axial flow water Kaplan turbine operates under a head of 2.5 m while the rotational speed is 75 rpm. The runner tip diameter is 4.8 m and the hub diameter is 2.4 m. The flow rate is 48.5 m3/s and hydraulic efficiency of 93%. Assuming zero whirl at exit, determine: Sketch the inlet and outlet velocity triangles at the MEAN radius and calculate: 1.1 The runner blade inlet and exit angles at mean radius. ANS: +/- 74˚...
A 10 ft long double pipe heat exchanger consisting of a 1 in sch 40 (1.315...
A 10 ft long double pipe heat exchanger consisting of a 1 in sch 40 (1.315 in OD, 1.029 in ID) inner pipe within a 4 in sch 40 (3.998 in ID) outer pipe uses chilled water to cool hot glycerin (the water flows in the annulus and glycerin in the inner pipe). The pipes are constructed of AISI 302 stainless steel. The mean velocities of the water and glycerin are 4 ft/s and 1.3 ft/s, respectively. If the average...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT