Question

In: Chemistry

A zero order reaction starts with an initial concentration of reactant of 1.00 M and has...

A zero order reaction starts with an initial concentration of reactant of 1.00 M and has a rate constant of 1.65x10-5M/s. What is the concentration of the reactant after 100 seconds?

Solutions

Expert Solution

A Zero order reaction has a rate that is independent of the concentration of the reactant(s). Increasing the concentration of the reacting species will not speed up the rate of the reaction i.e. the amount of substance reacted is proportional to the time. Zero order reactions are typically found when a material that is required for the reaction to proceed, such as a surface or a catalyst, is saturated by the reactants. The rate law for a zero order reaction is

where r is the reaction rate and k is the reaction rate coefficient with units of concentration or time. If, and only if, this zeroth order reaction 1) occurs in a closed system, 2) there is no net build-up of intermediates, and 3) there are no other reactions occurring, it can be shown by solving a mass balance equation for the system that:

If this differential equation is integrated it gives an equation often called the integrated zero order rate law.

where represents the concentration of the chemical of interest at a particular time, and represents the initial concentration.

A reaction is zero order if concentration data are plotted versus time and the result is a straight line. A plot of vs. time t gives a straight line with a slope of .

The half-life of a reaction describes the time needed for half of the reactant to be depleted (same as the half-life involved in nuclear decay, which is a first order reaction). For a zero order reaction the half-life is given by

In our case,

k=1.65x10-5M/s

Ao=1M

t=100seconds

using equation->

At= -1.65x10-5M/s * 100s +1M = 0.99835M


Related Solutions

1.)For a second-order reaction, the initial reactant concentration is 0.62 M. After 36.3 min, the concentration...
1.)For a second-order reaction, the initial reactant concentration is 0.62 M. After 36.3 min, the concentration is 0.22 M. What is k in M-1min-1? 2.) For a second order reaction, the initial reactant concentration, [A]o, is 0.84 M. After 12.6 s, the concentration is 0.62 M. What is [A] after 81 s? Hint given in feedback 3.)For the zero-order rate of reaction A → B + C, what is the concentration of A (in M) after 31.0 s if [A]o...
Part A The reactant concentration in a zero-order reaction was 9.00×10−2 M after 105 s and...
Part A The reactant concentration in a zero-order reaction was 9.00×10−2 M after 105 s and 1.00×10−2 M after 325 s . What is the rate constant for this reaction? Express your answer with the appropriate units. k0th = Part B What was the initial reactant concentration for the reaction described in Part A? Express your answer with the appropriate units. [A]0 = Part C The reactant concentration in a first-order reaction was 6.70×10−2 M after 25.0 s and 2.20×10−3...
Part A The reactant concentration in a zero-order reaction was 5.00×10−2 M after 190 s and...
Part A The reactant concentration in a zero-order reaction was 5.00×10−2 M after 190 s and 3.50×10−2 M after 370 s . What is the rate constant for this reaction? Express your answer with the appropriate units. Part B What was the initial reactant concentration for the reaction described in Part A? Express your answer with the appropriate units Part C The reactant concentration in a first-order reaction was 8.80×10−2M after 20.0 s and 7.10×10−3M after 60.0 s. What is...
A) The reactant concentration in a zero-order reaction was 9.00×10−2 M after 155 s and 2.00×10−2...
A) The reactant concentration in a zero-order reaction was 9.00×10−2 M after 155 s and 2.00×10−2 M after 365 s . What is the rate constant for this reaction? B) What was the initial reactant concentration for the reaction described in Part A? C) The reactant concentration in a first-order reaction was 9.80×10−2 M after 15.0 s and 6.30×10−3 M after 100 s . What is the rate constant for this reaction? D) The reactant concentration in a second-order reaction...
Part A The reactant concentration in a zero-order reaction was 0.100 M after 105 s and 3.00×10−2 M after 350 s
PLEASE MAKE SURE YOUR ANSWERS ARE CORRECT Part A The reactant concentration in a zero-order reaction was 0.100 M after 105 s and 3.00×10−2 M after 350 s . What is the rate constant for this reaction? Express your answer with the appropriate units. Indicate the multiplication of units, as necessary, explicitly either with a multiplication dot or a dash. Part B What was the initial reactant concentration for the reaction described in Part A? Express your answer with the...
A certain zero order reaction has a half live of 2.5 seconds when the initial concentration...
A certain zero order reaction has a half live of 2.5 seconds when the initial concentration is 2.5 M. What concentration of the reactant remains after 4.5 seconds? The reaction shown below obeys second order kinetics with k = 2.50 x 10-3 M-1s-1 at 25 oC. If the initial concentration of A is 2.00 M, how long will it take for concentration of A to decrease to 35.0 % of its original value? A + A → products For a...
Part A The reactant concentration in a zero-order reaction was 5.00×10−2M after 190 s and 2.50×10−2M...
Part A The reactant concentration in a zero-order reaction was 5.00×10−2M after 190 s and 2.50×10−2M after 370 s . What is the rate constant for this reaction? Express your answer with the appropriate units. Indicate the multiplication of units, as necessary, explicitly either with a multiplication dot or a dash. Answer: k0th = 1.39×10−4 Ms Part B What was the initial reactant concentration for the reaction described in Part A? Express your answer with the appropriate units. Indicate the...
It takes 41.0 min for the concentration of a reactant in a first-order reaction to drop...
It takes 41.0 min for the concentration of a reactant in a first-order reaction to drop from 0.430 M to 0.310 M at 25.0 oC. How long will it take for the concentration to reach 0.126 Molar? 153   min 60.2   min 87.2 min 0.368 min 71.3   min 50.4 min 5.20 x 102 min 16.9 min
Suppose the half-life is 55.0 s for a first order reaction and the reactant concentration is...
Suppose the half-life is 55.0 s for a first order reaction and the reactant concentration is 0.0761 M 40.1 s after the reaction starts. How many seconds after the start of the reaction does it take for the reactant concentration to decrease to 0.0183 M?
Using the 12 graphs explain: 1) How does the initial reactant concentration affect: the initial reaction...
Using the 12 graphs explain: 1) How does the initial reactant concentration affect: the initial reaction rate? the overall reaction order? the rate constant? 2) How does the temperature affect: the initial reaction rate? the overall reaction order? the rate constant? 3) How can the instantaneous rate of reaction be determined from the graphs? 4) How can the reaction order for a specific chemical species be determined from the graphs? 5) How can the rate constant be determined from the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT