Question

In: Advanced Math

1) If x, y, z are consecutive integers in order then 9 | (x+y+z) ⟺ 3...

1) If x, y, z are consecutive integers in order then 9 | (x+y+z) ⟺ 3 | y. (Do proof)

2) Let x, y be consecutive even integers then (x+y) is not divisible by 4. (Show proof and state why it was used)

Solutions

Expert Solution

Here I'm using definition of divides.a|b means b=ak for any integer k.also any three integer written in form is 2k,2k+1,2k+2. All proof are below thank you.


Related Solutions

1A) Use surface integral to evaluate the flux of F(x,y,z) =<x^3,y^3,z^3> across the cylinder x^2+y^2=1, 0<=z<=2...
1A) Use surface integral to evaluate the flux of F(x,y,z) =<x^3,y^3,z^3> across the cylinder x^2+y^2=1, 0<=z<=2 1B) Use the Divergence Theorem to evaluate the flux of F(x,y,z) =<x^3,y^3,z^3> across the cylinder x^2+y^2=1, 0<=z<=2
A Pythagorean triplet is a set of positive integers (x, y, z) such that x2 +...
A Pythagorean triplet is a set of positive integers (x, y, z) such that x2 + y2 = z2. Write an interactive script that asks the user for three positive integers (x, y, z, in that order). If the three numbers form a Pythagorean triplet the script should a) display the message ‘The three numbers x, y, z, form a Pythagorean triplet’ b) plot the corresponding triangle using red lines connecting the triangle edges. Hint: place the x value on...
Suppose X and Y are independent variables and X~ Bernoulli(1/2) and Y~ Bernoulli(1/3) and Z=X+Y A-...
Suppose X and Y are independent variables and X~ Bernoulli(1/2) and Y~ Bernoulli(1/3) and Z=X+Y A- find the joint probability table B- find the probility distribution table of Z C- find E(X+Y) D- find E(XY) E- find Cov(X, Y)
Find ??, ?? and ?? of F(x, y, z) = tan(x+y) + tan(y+z) – 1
Find ??, ?? and ?? of F(x, y, z) = tan(x+y) + tan(y+z) – 1
The temperature at a point (x,y,z) is given by T(x,y,z)=200e^(-x^2-y^2/4-z^2/9) , where T is measured in...
The temperature at a point (x,y,z) is given by T(x,y,z)=200e^(-x^2-y^2/4-z^2/9) , where T is measured in degrees Celsius and x,y, and z in meters. just try to keep track of what needs to be a unit vector. a) Find the rate of change of the temperature at the point (1, 1, -1) in the direction toward the point (-5, -4, -3). b) In which direction (unit vector) does the temperature increase the fastest at (1, 1, -1)? c) What is...
Velocity field for this system is: V=[X^2-(y*z^1/2/t)]i-[z*y^3+(x^1/3*z^2/t^1/2)j+[-x^1/3*t^2/z*y^1/2]k find the components of acceleration for the system.
Velocity field for this system is: V=[X^2-(y*z^1/2/t)]i-[z*y^3+(x^1/3*z^2/t^1/2)j+[-x^1/3*t^2/z*y^1/2]k find the components of acceleration for the system.
Describe the level surfaces for the 3-variable function: f(x,y,z) = z/(x-y)
Describe the level surfaces for the 3-variable function: f(x,y,z) = z/(x-y)
Assume that there are a sequence of consecutive integers 1, 2, 3, 4, 5, ... 15....
Assume that there are a sequence of consecutive integers 1, 2, 3, 4, 5, ... 15. Tom and Jim respectively select a number from the sequence randomly (no repetition). Given that Tom’s number is divisible by 5, what’s the probability that Tom’s number is greater than Jim’s number ?
*(1)(a) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z):...
*(1)(a) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): z=c}. (b) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): x=a}. (c) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): y=b}. *(2) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): z=kx+b} assuming both b and k are positive. (a) For what value of...
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just...
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just f (because f is already curried) let f x y z = (x,(y,z)) let f x y z = x (y z)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT