Question

In: Physics

Two objects of masses m and 8m are moving toward each other along the x-axis with...

Two objects of masses m and 8m are moving toward each other along the x-axis with the same initial speed
v0 = 525 m/s.
The object with mass m is traveling to the left, and the object with mass 8m is traveling to the right. They undergo an elastic glancing collision such that m is moving downward after the collision at a right angle from its initial direction.

What is the final speeds of the two objects m and 8m?

What is the angle theta at which the object with mass 8m is scattered? ( counterclockwise from the x-axis)

Solutions

Expert Solution

In order to calculate the final velocity of the masses we have to use the conservation of momentum for both x and y axis .then putting all values we can find the final velocities.


Related Solutions

Two objects with masses m1 = 37 kg and m2 = 39 kg are moving toward...
Two objects with masses m1 = 37 kg and m2 = 39 kg are moving toward each other with speeds V1 = 14 m/s and V2 = 18 m/s. They collide and stick together. Find their final: speed:
A particle moves along the x axis. It is initially at the position 0.250 m, moving...
A particle moves along the x axis. It is initially at the position 0.250 m, moving with velocity 0.070 m/s and acceleration -0.250 m/s2. Suppose it moves with constant acceleration for 3.90 s. Assume it moves with simple harmonic motion for 3.90 s and x = 0 is its equilibrium position. (a) Find its position. (b) Find its velocity at the end of this time interval.
A particle moves along the x axis. It is initially at the position 0.200 m, moving...
A particle moves along the x axis. It is initially at the position 0.200 m, moving with velocity 0.140 m/s and acceleration -0.410 m/s2. Suppose it moves with constant acceleration for 5.50 s. We take the same particle and give it the same initial conditions as before. Instead of having a constant acceleration, it oscillates in simple harmonic motion for 5.50 s around the equilibrium position x = 0. Hint: the following problems are very sensitive to rounding, and you...
The position of an object moving along an x axis is given by x = 3.12...
The position of an object moving along an x axis is given by x = 3.12 t - 4.08 t2 + 1.10 t3, where x is in meters and t in seconds. Find the position of the object at the following values of t: (a) 1 s, (b) 2 s, (c) 3 s, and (d) 4 s. (e) What is the object's displacement between t = 0 and t = 4 s? (f) What is its average velocity from t...
The position of a particle moving along the x axis is given in centimeters by x...
The position of a particle moving along the x axis is given in centimeters by x = 9.72 + 1.85 t3, where t is in seconds. Calculate (a) the average velocity during the time interval t = 2.00 s to t = 3.00 s; (b) the instantaneous velocity at t = 2.00 s; (c) the instantaneous velocity at t = 3.00 s; (d) the instantaneous velocity at t = 2.50 s; and (e) the instantaneous velocity when the particle is...
The position of a particle moving along an x axis is given by x = 12.0t2...
The position of a particle moving along an x axis is given by x = 12.0t2 - 4.00t3, where x is in meters and t is in seconds. Determine (a) the position, (b) the velocity, and (c) the acceleration of the particle at t = 5.00 s. (d) What is the maximum positive coordinate reached by the particle and (e) at what time is it reached? (f) What is the maximum positive velocity reached by the particle and (g) at...
The position of a particle moving along an x axis is given by x = 16.0t2...
The position of a particle moving along an x axis is given by x = 16.0t2 - 6.00t3, where x is in meters and t is in seconds. Determine (a) the position, (b) the velocity, and (c) the acceleration of the particle at t = 3.00 s. (d) What is the maximum positive coordinate reached by the particle and (e) at what time is it reached? (f) What is the maximum positive velocity reached by the particle and (g) at...
Two charges are placed along the x axis such that charge A is at -3 m,...
Two charges are placed along the x axis such that charge A is at -3 m, and has a charge of 2.5e-06 C. Charge B is at 2.2 m, and has a charge of -2.5e-06 C. What is the x component of the force (in Newtons) felt by charge A due to charge B? What is the x component of the force (in Newtons) felt by charge B due to charge A? Suppose a third charge were to be placed...
In an experiment, two protons are shot directly toward each other, each moving at half the...
In an experiment, two protons are shot directly toward each other, each moving at half the speed of light relative to the laboratory. a What speed does one proton measure for the other proton? b What would be the answer to part (a) if we used only nonrelativistic Newtonian mechanics? c What is the kinetic energy of each proton as measured by an observer at rest in the laboratory? d What is the kinetic energy of each proton as measured...
Two protons, each having a speed of 0.910c in the laboratory, are moving toward each other....
Two protons, each having a speed of 0.910c in the laboratory, are moving toward each other. a) Determine the momentum of each proton in the laboratory in GeV/c. b) Determine the total momentum of the two protons in the laboratory GeV/c. c) Determine the momentum of one proton as seen by the other proton GeV/c.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT