In: Statistics and Probability
16. n = 490, x = 145
p̄ = x/n = 0.2959
95% Confidence interval :
At α = 0.05 , two tailed critical value, z crit = NORM.S.INV( 0.05 / 2) = 1.960
Lower Bound = p̄ - z-crit*(√( p̄ *(1- p̄ )/n)) = 0.2555
Upper Bound = p̄ + z-crit*(√( p̄ *(1- p̄ )/n)) = 0.3363
---------------------------
17. n = 600, x = 279
p̄ = x/n = 0.465
99% Confidence interval :
At α = 0.01 , two tailed critical value, z crit = NORM.S.INV( 0.01 / 2) = 2.576
Lower Bound = p̄ - z-crit*(√( p̄ *(1- p̄ )/n)) = 0.4126
Upper Bound = p̄ + z-crit*(√( p̄ *(1- p̄ )/n)) = 0.5174
---------------------------
20. Let sample proportion, p = 0.5
Margin of error, E = 2% = 0.02
Significance level, α = 1-0.99 = 0.01
Critical value, z = NORM.S.INV( 0.01 /2) = 2.5758
Sample size, n = (z² * p * (1-p)) / E²
= 4146.8104 = 4147
-------------------------
Note: Q5 is not correct. please check it again. with this data sample size is coming as 1.