Question

In: Economics

Two goods are given, where x1 and x2 are the number of units of these goods....

Two goods are given, where x1 and x2 are the number of units of these goods. The preference structure of a consumer is given by the following (ordinal) utility function:

u (x1, x2) = x1 * x2

The indifference curves show a strictly convex course to the origin. The prices of the goods are given by p1 and p2. The consumer wants to achieve the level of utility ū with minimal expenditure.

  1. Determine the Hick’s demand function
  2. Please specify the output function e(p, ū). What exactly does it say?
  3. Now use Shepard’s lemma from the output function to determine the Hick’s demand functions.

Solutions

Expert Solution


Related Solutions

If the joint probability distribution of X1 and X2 is given by: f(X1, X2) = (X1*X2)/36...
If the joint probability distribution of X1 and X2 is given by: f(X1, X2) = (X1*X2)/36 for X1 = 1, 2, 3 and X2 = 1, 2, 3, find the joint probability distribution of X1*X2 and the joint probability distribution of X1/X2.
Sophie's utility function is given as U = 2(x1)^(1/2) + 8(x2) where x1 and x2 represent...
Sophie's utility function is given as U = 2(x1)^(1/2) + 8(x2) where x1 and x2 represent the two goods Sophie consumes. Sophie's income is $3400 and the prices are given as x1 = $2 and x2 = $160 a) derive & represent in two separate diagrams the demand for x1 and x2 ( for any income and prices) b) If Sophie's income is increased to $6600, what is the income effect on x1? Is x2 a normal good? Justify your...
Nigella has the following utility function over two goods (x1, x2): U(x1, x2) = min {0.5x1,...
Nigella has the following utility function over two goods (x1, x2): U(x1, x2) = min {0.5x1, 3x2} a.What is the Nigella’s utility level if x1= 20 andx2= 3? b.Suppose P1= 1 andP2= 3(where P1is the price x1andP2is theprice of x2) and Nigella has an income of 18. What is Nigella’s budget constraint? Illustrate it in a graph c.Solve for the Nigella’s utility maximizing bundle of x1andx2.
Suppose there are 2 goods, x1 and x2. The price of x1 goes up. x1 is...
Suppose there are 2 goods, x1 and x2. The price of x1 goes up. x1 is inferior, and x2 is normal. Using income and substitution effects, show which of the claims below is correct. Question options: x1 will decrease in quantity, but x2 will go up x1 may increase or decrease in quantity, the same is true for x2 the quantity of both goods will go down the quantity of both goods will go up
Bilal’s utility function is U(x1; x2) = x1x2 (assume x1 and x2 are normal goods). The...
Bilal’s utility function is U(x1; x2) = x1x2 (assume x1 and x2 are normal goods). The price of good 1 is P1, the price of good 2 is P2, and his income is $m a day. The price of good 1 suddenly falls. (a)Represent, using a clearly labelled diagram, the hicks substitution effect, the income effect and the total effect on the demand of good 1. (b) On a separate diagram, represent using a clearly labelled diagram, the slutsky substitution...
Let the utility function be given by u(x1, x2) = √x1 + x2. Let m be...
Let the utility function be given by u(x1, x2) = √x1 + x2. Let m be the income of the consumer, P1 and P2 the prices of good 1 and good 2, respectively. To simplify, normalize the price of good 1, that is P1 = £1. (a) Write down the budget constraint and illustrate the set of feasible bundles using a figure. (b) Suppose that m = £100 and that P2 = £10. Find the optimal bundle for the consumer....
Charlie’s utility function is U(x1, x2) = x1x2, where x1 and x2 are the Charlie’s consumption...
Charlie’s utility function is U(x1, x2) = x1x2, where x1 and x2 are the Charlie’s consumption of banana and apple, respectively. The price of apples is $1, the price of bananas is $2, and his income is $40. (a) Find out the Charlie’s optimal consumption bundle. (Note that Charlie’s utility function is Cobb-Douglas.) (b) If the price of apples now increases to $6 and the price of bananas stays constant, what would Charlie’s income have to be in order to...
1. Amy's utility function is U(x1 , x2) = x1x2, where x1 and x2 are Amy's...
1. Amy's utility function is U(x1 , x2) = x1x2, where x1 and x2 are Amy's consumption of banana and apple, respectively. The price of apples is $1, the price of bananas is $2, and his income is $40. (a) Find out the Amy's optimal consumption bundle. (Note that Amy's utility function is Cobb-Douglas.) (b) If the price of apples now increases to $6 and the price of bananas stays constant, what would Amy's income have to be in order...
Amy's utility function is U(x1 , x2) = x1x2, where x1 and x2 are Amy's consumption...
Amy's utility function is U(x1 , x2) = x1x2, where x1 and x2 are Amy's consumption of banana and apple, respectively. The price of apples is $1, the price of bananas is $2, and his income is $40. (a) Find out the Amy's optimal consumption bundle. (Note that Amy's utility function is Cobb-Douglas.) (b) If the price of apples now increases to $6 and the price of bananas stays constant, what would Amy's income have to be in order to...
The production function of a competitive firm is given by f(x1, x2) = x1^1/3 (x2 −...
The production function of a competitive firm is given by f(x1, x2) = x1^1/3 (x2 − 1)^1/3 The prices of inputs are w1 = w2 = 1. (a) Compute the firm’s cost function c(y). (b) Compute the marginal and the average cost functions of the firm. (c) Compute the firm’s supply S(p). What is the smallest price at which the firm will produce? 2 (d) Suppose that in the short run, factor 2 is fixed at ¯x2 = 28. Compute...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT