Question

In: Advanced Math

Let D and D'be integral domains. Let c = charD and c'= charD' (a) Prove that...

Let D and D'be integral domains.
Let c = charD and c'= charD'

(a) Prove that the direct product D ×D'has unity.

(b) Let a ∈D and b∈D'.
Prove that (a, b) is a unit in D ×D'⇐⇒
a is a unit in D, b is a unit in D'.

(c) Prove that D×D'is never an integral domain.

(d) Prove that if c, c'> 0,
then char(D ×D') = lcm(c, c')

(e) Prove that if c = 0, then char(D ×D') = 0.

Solutions

Expert Solution


Related Solutions

let D be an integral domain. prove that an element of D[x] is a unit if...
let D be an integral domain. prove that an element of D[x] is a unit if an only if it is a unit in D.
Prove the theorem in the lecture:Euclidean Domains and UFD's Let F be a field, and let...
Prove the theorem in the lecture:Euclidean Domains and UFD's Let F be a field, and let p(x) in F[x]. Prove that (p(x)) is a maximal ideal in F[x] if and only if p(x) is irreducible over F.
Prove that there are domains R containing a pair of elements havig no gcd.(Hint: let R...
Prove that there are domains R containing a pair of elements havig no gcd.(Hint: let R be a subring of F[x], for a field F, where R consistes of all polynomials with no linear terms, then show that x5 and x6 have no gcd) .
8.Let a and b be integers and d a positive integer. (a) Prove that if d...
8.Let a and b be integers and d a positive integer. (a) Prove that if d divides a and d divides b, then d divides both a + b and a − b. (b) Is the converse of the above true? If so, prove it. If not, give a specific example of a, b, d showing that the converse is false. 9. Let a, b, c, m, n be integers. Prove that if a divides each of b and c,...
C. Prove the following claim, using proof by induction. Show your work. Let d be the...
C. Prove the following claim, using proof by induction. Show your work. Let d be the day you were born plus 7 (e.g., if you were born on March 24, d = 24 + 7). If a = 2d + 1 and b = d + 1, then an – b is divisible by d for all natural numbers n.
let d be a positive integer. Prove that Q[sqrt d] = {a + b sqrt d|...
let d be a positive integer. Prove that Q[sqrt d] = {a + b sqrt d| a, b is in Q} is a field. provide explanations.
Let a and b be positive integers, and let d be their greatest common divisor. Prove...
Let a and b be positive integers, and let d be their greatest common divisor. Prove that there are infinitely many integers x and y such that ax+by = d. Next, given one particular solution x0 and y0 of this equation, show how to find all the solutions.
Prove algebraically ABC+A’C’D’+A’BD’+ACD=(A’+C)(A+D’)(B+C’+D)
Prove algebraically ABC+A’C’D’+A’BD’+ACD=(A’+C)(A+D’)(B+C’+D)
3. Let A = D + 1, B = D − 3, C = D +...
3. Let A = D + 1, B = D − 3, C = D + x, where D = dx. Calculate the differential operators AB, BC, CA and their effect on y(x) = e^3x
how to prove the Existence of factorization in Euclidean domains
how to prove the Existence of factorization in Euclidean domains
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT