Question

In: Physics

A 1300 kg aircraft going 35 m/s collides with a 1500 kg aircraft that is parked...

A 1300 kg aircraft going 35 m/s collides with a 1500 kg aircraft that is parked and they stick together after the collision and are going 16.3 m/s after the collision. If they skid for 14.3 seconds before stopping, how far did they skid? Hint: Are the aircraft moving at a constant velocity after the collision or do they experience an acceleration?

Solutions

Expert Solution


Related Solutions

(c7p50) A 1000- kg car collides with a 1300- kg car that was initially at rest...
(c7p50) A 1000- kg car collides with a 1300- kg car that was initially at rest at the origin of an x-y coordinate system. After the collision, the lighter car moves at 25.0 km/h in a direction of 25 o with respect to the positive x axis. The heavier car moves at 28 km/h at -50 o with respect to the positive x axis. What was the initial speed of the lighter car (in km/h)? Also, What was the initial...
A 7.1 kg block with a speed of 3.3 m/s collides with a 14.2 kg block...
A 7.1 kg block with a speed of 3.3 m/s collides with a 14.2 kg block that has a speed of 2.2 m/s in the same direction. After the collision, the 14.2 kg block is observed to be traveling in the original direction with a speed of 2.8 m/s. (a) What is the velocity of the 7.1 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 7.3 kg block with a speed of 4.8 m/s collides with a 14.6 kg block...
A 7.3 kg block with a speed of 4.8 m/s collides with a 14.6 kg block that has a speed of 3.2 m/s in the same direction. After the collision, the 14.6 kg block is observed to be traveling in the original direction with a speed of 4.0 m/s. (a) What is the velocity of the 7.3 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 6.3 kg block with a speed of 4.8 m/s collides with a 12.6 kg block...
A 6.3 kg block with a speed of 4.8 m/s collides with a 12.6 kg block that has a speed of 3.2 m/s in the same direction. After the collision, the 12.6 kg block is observed to be traveling in the original direction with a speed of 4.0 m/s. (a) What is the velocity of the 6.3 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 7.2 kg block with a speed of 10 m/s collides with a 19 kg block...
A 7.2 kg block with a speed of 10 m/s collides with a 19 kg block that has a speed of 5.4 m/s in the same direction. After the collision, the 19 kg block is observed to be traveling in the original direction with a speed of 5.4 m/s. (a) What is the velocity of the 7.2 kg block immediately after the collision?(b) By how much does the total kinetic energy of the system of two blocks change because of...
A 2290 kg car traveling at 11.7 m/s collides with a 2620 kg car that is...
A 2290 kg car traveling at 11.7 m/s collides with a 2620 kg car that is initially at rest at the stoplight. The cars stick together and move 3.30 m before friction causes them to stop. Determine the coefficient of kinetic friction betwen the cars and the road, assuming that the negative acceleration is constant and that all wheels on both cars lock at the time of impact.
A 2.7 kg block with a speed of 5.4 m/s collides with a 5.4 kg block...
A 2.7 kg block with a speed of 5.4 m/s collides with a 5.4 kg block that has a speed of 3.6 m/s in the same direction. After the collision, the 5.4 kg block is observed to be traveling in the original direction with a speed of 4.5 m/s. (a) What is the velocity of the 2.7 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 2 kg ball moving W at 5 m/s collides head on with a 1.5 kg...
A 2 kg ball moving W at 5 m/s collides head on with a 1.5 kg ball moving E at 8 m/s. Ifthe collision is elastic, compute the velocity of each ball after the collision.
A 1,4-kg object traveling at 5,5 m/s collides head-on with a 3-kg object traveling in the...
A 1,4-kg object traveling at 5,5 m/s collides head-on with a 3-kg object traveling in the opposite direction at 3,9 m/s. If the collision is perfectly elastic, what is the final speed of the 1,4-kg object? Answer in two decimal places. The answer is supposed to be 7,32. Why is that?
A 1700 kg car moving east at 17 m/s collides with a 1800 kg car moving...
A 1700 kg car moving east at 17 m/s collides with a 1800 kg car moving south at 20 m/s, and the two cars stick together. Consider east the positive x-direction and north the positive y-direction. a) What is the x-component of the initial momentum before the collision? ( -7100 kg·m/s, 64900 kg·m/s or 28900 kg·m/s) b) What is the y-component of the initial momentum before the collision? (-36000 kg·m/s, -7100 kg·m/s, 64900 kg·m/s or 36000 kg·m/s) c) What is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT