Question

In: Statistics and Probability

Two populations have mound-shaped, symmetric distributions. A random sample of 16 measurements from the first population...

Two populations have mound-shaped, symmetric distributions. A random sample of 16 measurements from the first population had a sample mean of 20, with sample standard deviation 2. An independent random sample of 9 measurements from the second population had a sample mean of 19, with sample standard deviation 3. Test the claim that the population mean of the first population exceeds that of the second. Use a 5% level of significance.

a) What distribution does the sample test statistic follow? Explain.

b) State the hypothesis.

c) Compute ?̅1 − ?̅2 and the corresponding sample distribution value.

d) Estimate the P-value of the sample test statistic.

e) Conclude the test.

f) Interpret the results.

Solutions

Expert Solution

Answer:

a)

As we are given here the example standard deviations, the t-appropriation would be utilized to do the theory testing.

b)

As we need to here test the case that the populace mean of the main populace surpasses that of the second,

Null hypothesis

Alternative hypothesis  

c)

The point gauge of the distinction in methods is registered as:

X1bar - X2bar = 20 - 19

= 18

The test statistics is given as follows

t = (X1bar - X2bar) / sqrt ((s1^2/n1) + (s2^2/n2))

substitute values

t = 1/(sqrt((2^2/16) + (3^2/9))

t = 0.8944

Consequently 0.8944 is the esteem of the test measurement here.

d)

The p-value for this one followed test here is processed as:

p = P (t {n1 + n2 - 2} > 0.8944)

p = P (t {23} > 0.8944) = 0.1902

e)

Here p-value is 0.1902 > 0.05 that is the alpha i.e., level of sigificance, the test is insignificant here and we can't reject the Ho (null hypothesis)

f)

Here we can't reject the null hypothesis Ho i.e., we dont have enough proof to claim that the populace mean of the main populace surpasses that of the second


Related Solutions

A random sample of 16 values is drawn from a mound-shaped and symmetric distribution. The sample...
A random sample of 16 values is drawn from a mound-shaped and symmetric distribution. The sample mean is 12 and the sample standard deviation is 2. Use a level of significance of 0.05 to conduct a two-tailed test of the claim that the population mean is 11.5. (a) Is it appropriate to use a Student's t distribution? Explain. (Choose one of 5 listed below) Yes, because the x distribution is mound-shaped and symmetric and σ is unknown. No, the x...
A random sample of 16 values is drawn from a mound-shaped and symmetric distribution. The sample...
A random sample of 16 values is drawn from a mound-shaped and symmetric distribution. The sample mean is 8 and the sample standard deviation is 2. Use a level of significance of 0.05 to conduct a two-tailed test of the claim that the population mean is 7.5. (a) Is it appropriate to use a Student's t distribution? Explain. Yes, because the x distribution is mound-shaped and symmetric and σ is unknown.No, the x distribution is skewed left.      No, the x...
A random sample of 25 values is drawn from a mound-shaped and symmetric distribution. The sample...
A random sample of 25 values is drawn from a mound-shaped and symmetric distribution. The sample mean is 13 and the sample standard deviation is 2. Use a level of significance of 0.05 to conduct a two-tailed test of the claim that the population mean is 12.5. (a) Is it appropriate to use a Student's t distribution? Explain. Yes, because the x distribution is mound-shaped and symmetric and σ is unknown. No, the x distribution is skewed left. No, the...
A random sample of 25 values is drawn from a mound-shaped and symmetric distribution. The sample...
A random sample of 25 values is drawn from a mound-shaped and symmetric distribution. The sample mean is 9 and the sample standard deviation is 2. Use a level of significance of 0.05 to conduct a two-tailed test of the claim that the population mean is 8.5. (a) Is it appropriate to use a Student's t distribution? Explain. Yes, because the x distribution is mound-shaped and symmetric and σ is unknown. No, the x distribution is skewed left. No, the...
Q1 A random sample of 36 values is drawn from a mound-shaped and symmetric distribution.
  Q1) A random sample of 36 values is drawn from a mound-shaped and symmetric distribution. The sample mean is 9 and the sample standard deviation is 2. Use a level of significance of 0.05 to conduct a two-tailed test of the claim that the population mean is 8.5. (A) Is it appropriate to use a Student's t distribution? Explain. a) Yes, because the x distribution is mound-shaped and symmetric and σ is unknown. b) No, the x distribution is...
The distribution of the heights of the first grade students is mound – shaped and symmetric...
The distribution of the heights of the first grade students is mound – shaped and symmetric with the mean height of 140 cm and standard deviation of 5 cm. According Empirical rule What % of heights is between 125 and 155 cm What % of heights is between 135 and 150 cm What % of heights is less than 130 cm What % of heights is less than 130 cm
Consider two populations. A random sample of 28 observations from the first population revealed a sample...
Consider two populations. A random sample of 28 observations from the first population revealed a sample mean of 40 and a sample standard deviation of 12. A random sample of 32 observations from the second population revealed a sample mean of 35 and a sample standard deviation of 14. (a) Using a .05 level of significance, test the hypotheses !H0 : μ1 − μ2 = 0 and !H1 : μ1 − μ2 ≠ 0, respectively. Explain your conclusions. (b) What...
Consider two populations. A random sample of 28 observations from the first population revealed a sample...
Consider two populations. A random sample of 28 observations from the first population revealed a sample mean of 40 and a sample standard deviation of 12. A random sample of 32 observations from the second population revealed a sample mean of 35 and a sample standard deviation of 14. (a) Using a .05 level of significance, test the hypotheses H0 : μ1 − μ2 = 0 and H1 : μ1 − μ2 ≠ 0, respectively. Explain your conclusions. (b) What...
A random sample of 49 measurements from one population had a sample mean of 16, with...
A random sample of 49 measurements from one population had a sample mean of 16, with sample standard deviation 3. An independent random sample of 64 measurements from a second population had a sample mean of 18, with sample standard deviation 4. Test the claim that the population means are different. Use level of significance 0.01. (a) What distribution does the sample test statistic follow? Explain. The standard normal. We assume that both population distributions are approximately normal with known...
A simple random sample of n measurements from a population is a subset of the population...
A simple random sample of n measurements from a population is a subset of the population selected in a manner such that which of the following is/are true? (Select all that apply. )Every sample of size n from the population has a proportionally weighted chance of being selected. Every sample of size n from the population has an equal chance of being selected. Every member of the population has an equal chance of being included in the sample.The simplest method...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT