Question

In: Physics

Planets X, Y, and Z have circular orbits around a Star, which is similar to our...

Planets X, Y, and Z have circular orbits around a Star, which is similar to our own Sun. Given the data listed below, answer the following questions.

Note: "Days" are treated as "Earth days", thus having 24 hrs.

Name Mass (kg) Orbit Radius (million km) Period (days)
Planet X 5.82E24 143.8 356.9
Planet Y 7.53E23 458.5
Planet Z 3.67E25 114.8

a) Use the data for Planet X to calculate the mass of this star.  

b) Use the data of of Planet Y to determine its period.

     

c) Use the data of Planet Z to determine its orbital radius.

Solutions

Expert Solution


Related Solutions

Two newly discovered planets follow circular orbits around a star in a distant part of the...
Two newly discovered planets follow circular orbits around a star in a distant part of the galaxy. The orbital speeds of the planets are determined to be 44.3 km/s and 59.8 km/s. The slower planet's orbital period is 6.92 years. (a) What is the mass of the star? (b) What is the orbital period of the faster planet, in years?
Two newly discovered planets follow circular orbits around a star in a distant part of the...
Two newly discovered planets follow circular orbits around a star in a distant part of the galaxy. The orbital speeds of the planets are determined to be 42.6 km/s and 53.6 km/s. The slower planet's orbital period is 6.30 years. (a) What is the mass of the star? (b) What is the orbital period of the faster planet, in years?
Two newly discovered planets follow circular orbits around a star in a distant part of the...
Two newly discovered planets follow circular orbits around a star in a distant part of the galaxy. The orbital speeds of the planets are determined to be 44.2 km/s and 57.5 km/s. The slower planet's orbital period is 7.50 years. (a) What is the mass of the star? kg (b) What is the orbital period of the faster planet, in years?
Two planets P1 and P2 orbit around a star S in circular orbits with speeds v1...
Two planets P1 and P2 orbit around a star S in circular orbits with speeds v1 = 42.6 km/s, and v2 = 56.0 km/s respectively. (a) If the period of the first planet P1 is 780 years what is the mass, in kg, of the star it orbits around? (b) Determine the orbital period, in years, of P2.
1)Two newly discovered planets follow circular orbits around a star in a distant part of the...
1)Two newly discovered planets follow circular orbits around a star in a distant part of the galaxy. The orbital speeds of the planets are determined to be 39.7 km/s and 53.7 km/s. The slower planet's orbital period is 8.02 years. (a) What is the mass of the star? (b) What is the orbital period of the faster planet, in years? 2)Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 461...
I.       According to Kepler’s Law, the planets in our solar system move in elliptical orbits around...
I.       According to Kepler’s Law, the planets in our solar system move in elliptical orbits around the Sun. If a planet’s closest approach to the Sun occurs at t = 0, then the distance r from the center of the planet to the center of the Sun at some later time t can be determined from the equation r = a (1 – e cos f) where a is the average distance between centers, e is a positive constant that...
Imagine two planets orbiting a star with orbits edge-on to the Earth. The peak Doppler shift...
Imagine two planets orbiting a star with orbits edge-on to the Earth. The peak Doppler shift for each 75 m/s, but one has a period of 7 days and the other has a period of 700 days. The star has a mass of one solar mass. Assume 1 solar mass equals 2∗10^30. 1.) Calculate the mass of the shorter period planet. (Hint: See Mathematical Insight Finding Masses of Extrasolar Planets) 2.) Calculate the mass of the longer period planet.
Two satellites are in circular orbits around the earth. The orbit for satellite A is at...
Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 555 km above the earth’s surface, while that for satellite B is at a height of 778 km. Find the orbital speed for (a) satellite A and (b) satellite B.
Two satellites are in circular orbits around the earth. The orbit for satellite A is at...
Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 458 km above the earth’s surface, while that for satellite B is at a height of 732 km. Find the orbital speed for (a) satellite A and (b) satellite B.
A particle of mass m orbits around the origin (0,0) in a circular path of radius...
A particle of mass m orbits around the origin (0,0) in a circular path of radius r. (a) Write the classical Hamiltonian (energy) of this system in terms of angular momentum of the particle. (b) Write the Schrodinger equation for this system. (c) Find the energy eigenvalues and their corresponding (normalized) wavefunctions.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT