Question

In: Physics

1. Consider a gas of molecules in thermal equilibrium with temperature T and a number n...

1. Consider a gas of molecules in thermal equilibrium with temperature T and a number n per area, confined to a 2-D flat surface.

-What is the kinetic energy per area of the gas?

-What is the force per length that these molecules exert on an edge of the surface?

-If there are diatomic molecules, what is the rotational energy per area of the gas? (Assume that each atom of each molecules is confined to a flat surface)

Solutions

Expert Solution


Related Solutions

Consider a gas of diatomic molecules at temperature T, each with moment of inertia I. If...
Consider a gas of diatomic molecules at temperature T, each with moment of inertia I. If Eg is the ground-state energy and Eex is the energy of an excited state, then the Maxwell-Boltzmann distribution predicts that the ratio of the number of molecules in the two states is nex ng = e −(Eex−Eg)/kBT . (1) a) Suppose we consider the excited state to be the ℓth rotational energy level, and the ground state to be ℓ = 0. Show that...
A solid surface is in diffusive and thermal equilibrium with a monatomic ideal gas at temperature...
A solid surface is in diffusive and thermal equilibrium with a monatomic ideal gas at temperature t and chemical potential μ. An adsorption site on the solid surface can be either empty (energy ε0 = 0), singly occupied (ε1 = ε), or doubly occupied (ε2 = 2ε) by an atom from the gas. If two atoms adsorb onto the same site, they also interact by a vibrational mode of frequency w. Thus, the energy of a doubly occupied site can...
A solid surface is in diffusive and thermal equilibrium with a monatomic ideal gas at temperature...
A solid surface is in diffusive and thermal equilibrium with a monatomic ideal gas at temperature t and chemical potential μ. An adsorption site on the solid surface can be either empty (energy ε0 = 0), singly occupied (ε1 = ε), or doubly occupied (ε2 = 2ε) by an atom from the gas. If two atoms adsorb onto the same site, they also interact by a vibrational mode of frequency w. Thus, the energy of a doubly occupied site can...
Consider a monoatomic ideal gas of N moles in a gas cylinder eqilibrated at temperature T1...
Consider a monoatomic ideal gas of N moles in a gas cylinder eqilibrated at temperature T1 and pressure P1 by a mass placed on the piston. Upon removal of the mass , the gas reaches a new eqilibrium pressure P2 (<P1). Calculate the amount of work done by the gas on the surroundings for the following processes. ( You must express your answer in terms of the given variables.) 1. a nonquasistatic isothermal process (sudden removal of the mass) 2....
Two moles( n= 2) of an Idea gas with temperature T = 300K , P =...
Two moles( n= 2) of an Idea gas with temperature T = 300K , P = 2bar and molar heat capacity Cvm = 1.5R are subjected consecutively to the following steps: 1) Gas is compressed Isothermally and reversibly to a pressure of 5bar 2) Following this the gas is expanded into vacuum until it volume reach V = 20 L 3) Finally there is a Isobaric change in temp to T = 350K Question: Calculate the total heat exchanged during...
n = 2.58 mol of Hydrogen gas is initially at T = 376 K temperature and...
n = 2.58 mol of Hydrogen gas is initially at T = 376 K temperature and pi = 1.88×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 8.78×105 Pa. What is the volume of the gas at the end of the compression process? How much work did the external force perform? How much heat did the gas emit? How much entropy did the gas emit? What would be the temperature of the...
n = 2.66 mol of Hydrogen gas is initially at T = 318 K temperature and...
n = 2.66 mol of Hydrogen gas is initially at T = 318 K temperature and pi = 2.49×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 9.49×105 Pa. a.)What is the volume of the gas at the end of the compression process? b.) How much work did the external force perform? c.) How much heat did the gas emit? d.) How much entropy did the gas emit? e.) What would be...
n = 4.33 mol of Hydrogen gas is initially at T = 378 K temperature and...
n = 4.33 mol of Hydrogen gas is initially at T = 378 K temperature and pi = 2.88
n = 3.49 mol of Hydrogen gas is initially at T = 309 K temperature and...
n = 3.49 mol of Hydrogen gas is initially at T = 309 K temperature and pi = 2.97×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 7.27×105 Pa. What is the volume of the gas at the end of the compression process? How much work did the external force perform? How much heat did the gas emit? How much entropy did the gas emit? What would be the temperature of the...
n = 4.43 mol of Hydrogen gas is initially at T = 336.0 K temperature and...
n = 4.43 mol of Hydrogen gas is initially at T = 336.0 K temperature and pi = 2.45×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 8.84×105 Pa. How much work did the external force perform? How much heat did the gas emit? How much entropy did the gas emit? What would be the temperature of the gas, if the gas was allowed to adiabatically expand back to its original pressure?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT