In: Statistics and Probability
Data Display Row Speed StopDist 1 25 63 2 25 56 3 30 84 4 35 107 5 45 153 6 45 164 7 55 204 8 55 220 9 65 285 10 65 303 Descriptive Statistics Variable N Mean Median TrMean StDev SEMean Speed 10 44.50 45.00 44.38 15.36 4.86 StopDist 10 163.9 158.5 160.0 88.4 28.0 Variable Min Max Q1 Q3 Speed 25.00 65.00 28.75 57.50 StopDist 56.0 303.0 78.7 236.2 Regression Analysis The regression equation is StopDist = __________________________________ Predictor Coef Stdev t-ratio p Constant −89.99 12.68 −7.10 0.000 Speed 5.7053 0.2707 ___________ s = 12.47 R-sq = 98.2% R-sq(adj) = 98.0% |
Answer:
Answer:
Answer:
Answer:
Answer:
a)
stopdist = -89.99 + 5.7053*spped
b)
for every unit increase in speed, value of stop distance get increase by 5.7053
c)
n = 10
alpha,α = 0.05
estimated slope= 5.7053
std error = 0.2707
Df = n - 2 = 8
critical t-value = 2.3060 [excel function:
=t.inv.2t(0.05,8)
margin of error ,E = t*Std error =
0.6242
confidence interval is
lower bound = ß1 - E= 5.0811
upper bound = ß1 + E= 6.3295
d)
Slope hypothesis test
Ho: ß = 0
Ha: ß ╪ 0
n = 10
alpha,α = 0.05
estimated slope= 5.7053
std error = 0.2707
t-test statistic = t = (estimated slope -ß)/ std error
= (5.7053-0)/0.2707 = 21.0761
Df = n - 2 = 8
critical t-value = 2.3060
since, t-stat = 21.0761 >t-critical, reject Ho
so, slope is significant at α=0.05
e)
t-test statistic = t = (estimated slope -ß)/ std error = (5.7053-2)/0.2707 = 13.688
df=8
p-value=0.0000 [excel function: =t.dist.2t(13.688,8) ]