In: Statistics and Probability
Consider the following set of data.
(18, 14), (28, 45), (60, 33), (81, 24), (106, 56), (122,
6)
(a) Calculate the covariance of the set of data. (Give your
answer correct to two decimal places.)
(b) Calculate the standard deviation of the six x-values
and the standard deviation of the six y-values.
(Give your answers correct to three decimal
places.)
Sx =
Sy =
(c) Calculate r, the coefficient of linear correlation,
for the data in part (a). (Give your answer correct to two
decimal places.)
(a) Calculate the covariance of the set of data.
Formula for covariance is given as below:
Cov. = ∑(X – Xbar)(Y – Ybar) / (n – 1)
Calculation table is given as below:
We are given n = 6
No. |
x |
y |
(X - Xbar) |
(Y - Ybar) |
(X - Xbar)(Y - Ybar) |
1 |
18 |
14 |
-51.16667 |
-15.66667 |
801.6113339 |
2 |
28 |
45 |
-41.16667 |
15.33333 |
-631.2221361 |
3 |
60 |
33 |
-9.16667 |
3.33333 |
-30.55553611 |
4 |
81 |
24 |
11.83333 |
-5.66667 |
-67.05557611 |
5 |
106 |
56 |
36.83333 |
26.33333 |
969.9442339 |
6 |
122 |
6 |
52.83333 |
-23.66667 |
-1250.388986 |
Total |
415 |
178 |
-207.6666667 |
||
Mean |
69.1666667 |
29.66666667 |
Cov. = ∑(X – Xbar)(Y – Ybar) / (n – 1)
Cov. = -207.6666667 / (6 – 1)
Cov. = -207.6666667 / 5
Cov. = -41.5333333
Cov. = -41.53
Part b
Formula for standard deviation is given as below:
S = sqrt[∑(X – Xbar)^2/(n – 1)]
Calculation tables are given as below:
No. |
x |
(X - Xbar)^2 |
1 |
18 |
2618.028119 |
2 |
28 |
1694.694719 |
3 |
60 |
84.02783889 |
4 |
81 |
140.0276989 |
5 |
106 |
1356.694199 |
6 |
122 |
2791.360759 |
Total |
415 |
8684.833333 |
Sx = sqrt(8684.833333/5)
Sx = 41.67693207
Sx = 41.677
Calculation table for Sy
No. |
y |
(Y - Ybar)^2 |
1 |
14 |
245.4445489 |
2 |
45 |
235.1110089 |
3 |
33 |
11.11108889 |
4 |
24 |
32.11114889 |
5 |
56 |
693.4442689 |
6 |
6 |
560.1112689 |
Total |
178 |
1777.333333 |
Sy = sqrt(1777.333333/5)
Sy = 18.85382366
Sy = 18.854
(c) Calculate r, the coefficient of linear correlation, for the data in part (a).
Formula for correlation coefficient is given as below:
r = Cov.(x, y) / (Sx*Sy)
r = -41.53 / (41.677*18.854)
r = -0.0528521
r = -0.05