Question

In: Statistics and Probability

I need explanation for this problem: The breaking strength of a certain type of fabric has...

I need explanation for this problem:

The breaking strength of a certain type of fabric has mean 1.86 and standard deviation .2. A random sample of 49 pieces of fabric is drawn.

A- What is the probability that the sample mean breaking strength is less than 1.8?

B- How large a sample size is needed so that the probability is .06 that the sample mean is less than 1.8?

Ans for (A)= 0.02

Ans for (B)= 27

Solutions

Expert Solution

Answer(A):

Given that,

We need to calculate

To calculate this, let us first standardize the .

Let be the standardized value of and is given by,

substituting the given values, we get

Then from standard normal distribution table (Z table),

(two decimal places)

Answer (B):

Here given that, .

We need to calculate . Again from Z table (Or in MS Excel type =NORMINV(0.06))

Then again using the above mentioned formula for , we get

substituting the given values, we get


Related Solutions

Previous experience has shown that the breaking strength of the fabric used in a certain brand...
Previous experience has shown that the breaking strength of the fabric used in a certain brand of drapes is normally distributed with a standard deviation of 2 pounds per square inch. A random sample of 9 specimens is examined to reveal an average breaking strength of x = 98 pounds per square inch. Determine the p−value required to test the hypothesis that the true mean is not 97.
Data analysis of the breaking strength of a certain fabric shows that it is normally
Data analysis of the breaking strength of a certain fabric shows that it is normally distributed with a mean of 300 lb and a variance of 9. a. Estimate the percentage of fabric samples that will have a breaking strength no less than 294 lb. b. Estimate the percentage of fabric samples that will have a breaking strength no less than 297 lb and no greater than 303 lb.
In an experiment involving the breaking strength of a certain type of thread used in personal...
In an experiment involving the breaking strength of a certain type of thread used in personal flotation devices, one batch of thread was subjected to a heat treatment for 60 seconds and another batch was treated for 120 seconds. The breaking strengths (in N) of ten threads in each batch were measured. The results were 60 seconds: 43 52 52 58 49 52 41 52 56 58 120 seconds: 59 55 59 66 62 55 57 66 66 51 Let...
In an experiment involving the breaking strength of a certain type of thread used in personal...
In an experiment involving the breaking strength of a certain type of thread used in personal flotation devices, one batch of thread was subjected to a heat treatment for 60 seconds and another batch was treated for 120 seconds. The breaking strengths (in N) of ten threads in each batch were measured. The results were 60 seconds: 43 52 52 58 49 52 41 52 56 50 120 seconds: 59 55 59 66 62 55 57 66 66 51 Let...
In an experiment involving the breaking strength of a certain type of thread used in personal...
In an experiment involving the breaking strength of a certain type of thread used in personal flotation devices, one batch of thread was subjected to a heat treatment for 60 seconds and another batch was treated for 120 seconds. The breaking strengths (in N) of ten threads in each batch were measured. The results were 60 seconds:     43    52    52    58    49    52    41    52    56    58 120 seconds:   59    55    59    66    62    55    57    66    66    51 Let...
The breaking strength X of a certain rivet used in a machine engine has a mean...
The breaking strength X of a certain rivet used in a machine engine has a mean 5000 psi and standard deviation 400 psi. A random sample of 25 rivets is taken. Consider the distribution of ?̅, the sample mean breaking strength. (a) What is the probability that the sample mean falls between 4800 psi and 5200 psi? (b) What sample n would be necessary in order to have P(4950 < ?̅<5050) = 0.95 (0.99)?
The specifications for a certain kind of ribbon call for a mean breaking strength of 185...
The specifications for a certain kind of ribbon call for a mean breaking strength of 185 pounds. Suppose five pieces are randomly selected from different rolls. The breaking strengths of these ribbons are 171.6, 191.8, 178.3, 184.9 and 189.1 pounds. You are required to perform an appropriate hypothesis test by formulating the null hypothesis µ = 185 against the alternative hypothesis test µ < 185 at α = 0.10. (i) What is the critical region for the test? (ii) What...
A certain type of cable has a mean breaking point of 159 pounds with a standard...
A certain type of cable has a mean breaking point of 159 pounds with a standard deviation of 6 pounds. What weight should be specified so that 95​% of the cables can be expected not to break supporting that​ weight?
I need a step by step explanation to the following problem in order to make me...
I need a step by step explanation to the following problem in order to make me understand the solution: 14-23 Flexible Budgets and Operating-Income Variance Analysis: Spreadsheet Application The following information is available for Brownstone Products Company for the month of July: Actual Master Budget Units                       3,800                         4,000 Sales Revenue                     53,200                      60,000 Variable manufacturing costs                     19,000 16,000 Fixed manufacturing costs                     16,000                      15,000 Variable selling and administrative expenses                       7,700                         8,000 Fixed selling...
A certain type of thread is manufactured with a mean tensile strength is 78.3kg, and a...
A certain type of thread is manufactured with a mean tensile strength is 78.3kg, and a standard deviation is 5.6kg. Assuming that the strength of this type of thread is distributed approximately normal, find: a) The probability that the mean strength of a random sample of 10 such thread falls between 77kg and 78kg. b) The probability that the mean strength greater than 79kg. c) The probability that the mean strength is less than 76kg. d) The value of X...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT