Question

In: Physics

A long, straight, thin-walled cylindrical shell of radius R carries a current I parallel to the...

A long, straight, thin-walled cylindrical shell of radius R carries a current I parallel to the central axis of the shell in the positive x-axis direction.

Find the magnetic field (including direction - as seen from the negative x-axis) inside the shell. (Use the following as necessary: μ0, I, π and r.)

Binside =___
direction? ___


Find the magnetic field (including direction - as seen from the negative x-axis) outside the shell. (Use the following as necessary: μ0, I, π, and r.)

Boutside =___
direction___

Solutions

Expert Solution


Related Solutions

Consider a cylindrical wire of radius R (indefinitely long) that carries a total steady current I...
Consider a cylindrical wire of radius R (indefinitely long) that carries a total steady current I such that there is a constant current density j across the profile of the wire (for the first part of this task, consider just a current density in vacuum) a) in order to calculate the magnetic induction it is suitable to work in cylindrical coordinates. Considering Boundary conditions at ρ→∞, the magnetic induction ca be written as B=B_ρ (ρ,φ,z) e_ ρ + B_ φ(ρ,φ,z)e_...
Consider a cylindrical wire of radius R (indefinitely long) that carries a total steady current I...
Consider a cylindrical wire of radius R (indefinitely long) that carries a total steady current I such that there is a constant current density j across the profile of the wire (for the first part of this task, consider just a current density in vacuum) a) in order to calculate the magnetic induction it is suitable to work in cylindrical coordinates. Considering Boundary conditions at ρ→∞, the magnetic induction ca be written as B=B_ρ (ρ,φ,z) e_ ρ + B_ φ(ρ,φ,z)e_...
A long straight cylindrical shell has an inner radius Ri and an outer radius R0.
A long straight cylindrical shell has an inner radius Ri and an outer radius R0. It carries a current I, uniformly distributed over its cross section. A wire is parallel to the cylinder axis, in the hollow region (r < Ri). The magnetic field is zero everywhere outside the shell (r > R0).We conclude that the wire: A) is on the cylinder axis and carries current I in the same direction as the current in the shell B) may be anywhere in...
Consider a long, thin, plastic cylindrical shell centered at the origin. It has a radius 2R...
Consider a long, thin, plastic cylindrical shell centered at the origin. It has a radius 2R and a linear charge density -3 λ . b. Use Gauss's Law to find the electric field (mag and direction) at a distance x=3R from the origin. Now a long line of charge (parallel to the axis of the cylinder) is added at a distance x=4R with linear charge density + λ . c. use superposition to find the force (mag. and direction) on...
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa =...
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa = 8.00×10-6C. Concentric with it is a thin-walled metal spherical shell of radius b = 5.20 cm and charge qb = 2.50×10-6 C. Find the electric field at distance r = 0 cm from the common center. Tries 0/10 Find the electric field at distance r = 3.70 cm from the common center. Tries 0/10 Find the electric field at distance r = 8.90 cm...
A long, hollow, cylindrical conductor (inner radius 2.4 mm, outer radius 4.4 mm) carries a current...
A long, hollow, cylindrical conductor (inner radius 2.4 mm, outer radius 4.4 mm) carries a current of 45 A distributed uniformly across its cross section. A long thin wire that is coaxial with the cylinder carries a current of 24 A in the opposite direction. What is the magnitude of the magnetic field (a) 1.4 mm, (b) 2.6 mm, and(c) 4.7 mm from the central axis of the wire and cylinder?
Consider a 2.5cm diameter thin walled horizontal cylindrical pipe that carries chilled water at about 5°C....
Consider a 2.5cm diameter thin walled horizontal cylindrical pipe that carries chilled water at about 5°C. The pipe is very long and is indoors in a climate controlled area with essentially still air. Design an insulation system that will reduce heat gain per unit length of pipe by at least 75% as compared to the heat gain to the bare pipe. Completely specify the insulation system (materials, dimensions, etc.) you design.
A Geiger tube consists of two elements, a long metal cylindrical shell and a long straight...
A Geiger tube consists of two elements, a long metal cylindrical shell and a long straight metal wire running down its central axis. Model the tube as if both the wire and cylinder are infinitely long. The central wire is positively charged and the outer cylinder is negatively charged. The potential difference between the wire and the cylinder is 1.10 kV. Suppose the cylinder in the Geiger tube has an inside diameter of 3.64 cm and the wire has a...
Two long straight parallel wires are 11 cm apart. Wire A carries 2.0-A current. Wire B's...
Two long straight parallel wires are 11 cm apart. Wire A carries 2.0-A current. Wire B's current is 5.0 A in the same direction. Determine the magnetic field magnitude due to wire A at the position of wire B. Determine the magnetic field due to wire B at the position of wire A Are these two magnetic fields equal and opposite? Determine the force per unit length on wire A due to wire B. Determine the force per unit length...
Two long, charged, thin-walled, concentric cylindrical shells have radii of 3.9 and 9.4 cm. The charge...
Two long, charged, thin-walled, concentric cylindrical shells have radii of 3.9 and 9.4 cm. The charge per unit length is 6.8 × 10-6 C/m on the inner shell and -8.5 × 10-6 C/m on the outer shell. What are the (a) magnitude E and (b) direction (radially inward or outward) of the electric field at radial distance r = 5.9 cm? What are (c) E and (d) the direction at r = 14 cm?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT