Question

In: Statistics and Probability

When fitting a multiple regression model, you should check for independence of observations and the absence...

When fitting a multiple regression model, you should check for independence of observations and the absence of multicollinearity. Discuss how you would check appropriate statistics and/or plots.

(a) When we run a multiple regression, we hope to be able to generalize the sample model to the entire population. To do this, several assumptions must be met including:  No Multicollinearity  Homoscedasticity  Independent Errors  Normally-distributed Errors

Explain what is meant by each of these assumptions and describe the checks that you would undertake to validate that there has been no violation.

Solutions

Expert Solution

1 multiple linear regression analysis requires that the errors between observed and predicted values (i.e., the residuals of the regression) should be normally distributed. This assumption may be checked by looking at a histogram or a Q-Q-Plot. Normality can also be checked with a goodness of fit test (e.g., the Kolmogorov-Smirnov test), though this test must be conducted on the residuals themselves.

2 multiple linear regression assumes that there is no multicollinearity in the data. Multicollinearity occurs when the independent variables are too highly correlated with each other.

Multicollinearity may be checked multiple ways:

1) Correlation matrix – When computing a matrix of Pearson’s bivariate correlations among all independent variables, the magnitude of the correlation coefficients should be less than .80.

2) Variance Inflation Factor (VIF) – The VIFs of the linear regression indicate the degree that the variances in the regression estimates are increased due to multicollinearity. VIF values higher than 10 indicate that multicollinearity is a problem.

3 A scatterplot of residuals versus predicted values is good way to check for homoscedasticity.  If the data are heteroscedastic, a non-linear data transformation or addition of a quadratic term might fix the problem.

4

Independent errors: This means that residuals should be uncorrelated.this can be checked using Durbin Watson test.


Related Solutions

When estimating a multiple linear regression model based on 30 observations, the following results were obtained....
When estimating a multiple linear regression model based on 30 observations, the following results were obtained. [You may find it useful to reference the t table.] Coefficients Standard Error t Stat p-value Intercept 153.08 122.34 1.251 0.222 x1 12.64 2.95 4.285 0.000 x2 2.01 2.46 0.817 0.421 a-1. Choose the hypotheses to determine whether x1 and y are linearly related. H0: β0 ≤ 0; HA: β0 > 0 H0: β1 ≤ 0; HA: β1 > 0 H0: β0 = 0;...
Exercise 15-6 Algo When estimating a multiple linear regression model based on 30 observations, the following...
Exercise 15-6 Algo When estimating a multiple linear regression model based on 30 observations, the following results were obtained. [You may find it useful to reference the t table.] Coefficients Standard Error t Stat p-value Intercept 153.35 126.57 1.212 0.236 x1 11.10 2.62 4.237 0.000 x2 2.36 2.06 1.146 0.261 a-1. Choose the hypotheses to determine whether x1 and y are linearly related. H0: β1 = 0; HA: β1 ≠ 0 H0: β0 = 0; HA: β0 ≠ 0 H0:...
When should a regression model be used to make a prediction? When should it not be...
When should a regression model be used to make a prediction? When should it not be used to make a prediction? What value tells us how good the prediction will be?
Can you give me a reason why to use multiple linear regression and curve fitting in...
Can you give me a reason why to use multiple linear regression and curve fitting in short term load forecasting?
When we estimate a linear multiple regression model (including a linear simple regression model), it appears...
When we estimate a linear multiple regression model (including a linear simple regression model), it appears that the calculation of the coefficient of determination, R2, for this model can be accomplished by using the squared sample correlation coefficient between the original values and the predicted values of the dependent variable of this model. Is this statement true? If yes, why? If not, why not? Please use either matrix algebra or algebra to support your reasoning.
1. How is the variance affected when you add a predictor to a multiple regression model?...
1. How is the variance affected when you add a predictor to a multiple regression model? 2. Why does multiple-regression modeling require subject-matter expertise? 3. Can overfitting occur in a model with a high coefficient of determination value? What would that mean for that model? 4. What is the process of assessing a model’s capacity to make accurate predictions?
1. A multiple linear regression model should not be used if: A The variables are all...
1. A multiple linear regression model should not be used if: A The variables are all statistically significant. B The coefficient of determination R2 is large. C Both of the above. D Neither of the above. 2. Consider a multiple linear regression model where the output variable is a company's revenue for different months, and the purpose is to investigate how the revenue depends upon the company's advertising budget. The input variables can be time-lagged so that the first input...
4. How should a researcher specify a multiple linear regression model? In answering this question, you...
4. How should a researcher specify a multiple linear regression model? In answering this question, you should be sure to draw on your overall knowledge of econometrics in order to consider not only how a researcher should specify an initial model, but also how a researcher should assess the performance of an initial model and thereby iterate towards a final model.
1. Following is the R output when fitting regression model of X= miles run per week...
1. Following is the R output when fitting regression model of X= miles run per week and Y= weight loss after a year. Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 64.28 8.11 7.93 0.015 * X 1.23 0.63 1.96 0.188 ----------------- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 6.773 on 2 degrees of freedom Multiple R-squared: 0.6586, Adjusted R-squared: 0.4879 F-statistic: 3.858 on 1 and 2 DF, p-value: 0.1885...
Suppose for a multiple regression on just 5 observations you are given the following portion of...
Suppose for a multiple regression on just 5 observations you are given the following portion of an excel regression output: RESIDUAL OUTPUT Observation Predicted y(hat) Residuals 1 73.61 0.39 2 93.03 -1.03 3 58.97 -0.97 4 85.21 -0.21 5 78.18 1.82 Test the model for autocorrelation at a 10% level of significance. Test the model for heteroskedasticity using a level of significance of 5%
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT