Question

In: Electrical Engineering

a sphere of radius R is polarized. The polarization is P =kr^2 r(hat) 1. determine the...

a sphere of radius R is polarized. The polarization is P =kr^2 r(hat)

1. determine the bound surface charge density.
2. determine the volume charge density
3. determine the total balance charge within and on the sphere

Solutions

Expert Solution


Related Solutions

Determine the radius r of a sphere centered on the nucleus within which the probability of...
Determine the radius r of a sphere centered on the nucleus within which the probability of finding the electron for the ground state of hydrogen is 53 % . Determine the radius r of a sphere centered on the nucleus within which the probability of finding the electron for the ground state of hydrogen is 95 % . Determine the radius r of a sphere centered on the nucleus within which the probability of finding the electron for the ground...
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder...
A solid sphere of radius R, a solid cylinder of radius R, and a hollow cylinder of radius R all have the same mass, and all three are rotating with the same angular velocity. The sphere is rotating around an axis through its center, and each cylinder is rotating around its symmetry axis. Which one has the greatest rotational kinetic energy? both cylinders have the same rotational kinetic energy the solid cylinder the solid sphere they all have the same...
A wheeled cart (frictionless), a solid cylinder of radius r, a solid sphere of radius r,...
A wheeled cart (frictionless), a solid cylinder of radius r, a solid sphere of radius r, and a hollow cylinder of radius r are all allowed to roll down an incline. Derive a general relationship for the linear acceleration of each object depending on the angle of the ramp and the rotational inertia. You may assume that the frictional force is small enough that it is only causing rotation in each case.
1. A flywheel is the shape of a sphere of radius R. Calculate the stored energy...
1. A flywheel is the shape of a sphere of radius R. Calculate the stored energy again for rotation time T and total mass M. Do not attempt to use moment of inertia or rotational mechanics, do it the way we did in class. 2. Find an exercise calorie website, and for a 70 kg person walking on a treadmill at 5 kilometers per hour, by varying the grade of the treadmill, plot the work output power (of lifting the...
A sphere of radius R is charged with a charge Q. 1. What is the potential...
A sphere of radius R is charged with a charge Q. 1. What is the potential outside of the sphere at distance r from the center of the sphere? 2. what is the electric potential at the center of the sphere
1. The density of a filling sphere with radius R was given ρ = ρ0 (1...
1. The density of a filling sphere with radius R was given ρ = ρ0 (1 - r/2R). where r is the distance from the center. (a) find the force at which this sphere acts on the unit mass in r < R; (b) find the force acting on the unit mass at r ≥ R; (c) draw a graph of the amount obtained in (a) and (b) for r.
A non-conducting sphere of radius R centered at O contains a spherical cavity of radius R’...
A non-conducting sphere of radius R centered at O contains a spherical cavity of radius R’ centered at O'. Let d be the displacement of O’relative to 0. Throughout the sphere, there is a uniform charge density rho_0 (except inside the cavity, which is uncharged). (a) Use the principle of superposition to write down an expression for E(r) everywhere. (b) Repeat (a) for the electric potential b(r).
A charge Q is distributed in the volume of a sphere of radius R with a...
A charge Q is distributed in the volume of a sphere of radius R with a density non-uniform load cubic p = B (R - r) , where b is a constant and r is the distance to the center of the sphere determine: The values ​​of the potential in the center and on the surface of the sphere.
Conditions are: It is a hard sphere with radius R, it has no resistance. The electrostatic...
Conditions are: It is a hard sphere with radius R, it has no resistance. The electrostatic potential is V. There is a conducting material around it (no boundary) with resistivity, n. Find the electrostatic field, potential and current density outside the sphere.
A sphere of radius R has a radius dependent charge density ρ = B · r3...
A sphere of radius R has a radius dependent charge density ρ = B · r3 in terms of R and B. Calculate the potential as a function of r from the center of the sphere.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT