Question

In: Statistics and Probability

Think about these three probability distributions: hypergeometric, binomial, and Poisson and describe one or more ways...

Think about these three probability distributions: hypergeometric, binomial, and Poisson and describe one or more ways that you might use any of these distributions to explore their applications in different situations that need not be particularly economically valuable

Solutions

Expert Solution

Hypergeometric Distribution: In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of {\displaystyle k} successes (random draws for which the object drawn has a specified feature) in {\displaystyle n} draws, without replacement, from a finite population of size {\displaystyle N} that contains exactly {\displaystyle K} objects with that feature, wherein each draw is either a success or a failure.

Application: A small voting district has 101 female voters and 95 male voters. A random sample of 10 voters is drawn.

Binomial Distribution: In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own boolean-valued outcome: success/yes/true/one (with probability p) or failure/no/false/zero (with probability q = 1 − p).

Application: Let’s say that 80% of all business startups in the IT industry report that they generate a profit in their first year. If a sample of 10 new IT business startups is selected, find the probability that exactly seven will generate a profit in their first year.

Poisson Distribution: The Poisson distribution is the discrete probability distribution of the number of events occurring in a given time period, given the average number of times the event occurs over that time period.

Application: A Poisson distribution can be used to analyze the probability of various events regarding how many customers go through the drive-through. It can allow one to calculate the probability of a lull in activity (when there are 0 customers coming to the drive-through) as well as the probability of a flurry of activity (when there are 5 or more customers coming to the drive-through). This information can, in turn, help a manager plan for these events with staffing and scheduling.


Related Solutions

The binomial and Poisson distributions are two different discrete probability distributions. Explain the differences between the...
The binomial and Poisson distributions are two different discrete probability distributions. Explain the differences between the distributions and provide an example of how they could be used in your industry or field of study. In replies to peers, discuss additional differences that have not already been identified and provide additional examples of how the distributions can be used.
The binomial and Poisson distributions are two different discrete probability distributions. Explain the differences between the...
The binomial and Poisson distributions are two different discrete probability distributions. Explain the differences between the distributions and provide an example of how they could be used in your industry or field of study.
How can you identify when to use the binomial, geometric and hypergeometric probability distributions? For example,...
How can you identify when to use the binomial, geometric and hypergeometric probability distributions? For example, if I want to flip a coin until I get heads, it is geometric, but if I flip the coin 5 times, it becomes binomial. What changed? How do I know which distribution to use?
In Unit 2, you have learned about three different types of distributions: Normal, binomial, and Poisson....
In Unit 2, you have learned about three different types of distributions: Normal, binomial, and Poisson. You can take data that you collect and plot it out onto graphs to see a visual representation of the data. By simply looking at data on a graph, you can tell a lot about how related your observed data are and if they fit into a normal distribution. For this submission, you will be given a series of scenarios and small collections of...
In Unit 2, you have learned about three different types of distributions: Normal, binomial, and Poisson....
In Unit 2, you have learned about three different types of distributions: Normal, binomial, and Poisson. You can take data that you collect and plot it out onto graphs to see a visual representation of the data. By simply looking at data on a graph, you can tell a lot about how related your observed data are and if they fit into a normal distribution. For this submission, you will be given a series of scenarios and small collections of...
4. For this problem, you’ll compare the hypergeometric and binomial distributions. Suppose there is a sock...
4. For this problem, you’ll compare the hypergeometric and binomial distributions. Suppose there is a sock drawer with N socks, each placed loosely in the drawer (not rolled into pairs). The total number of black socks is m. You take out a random sample of n < m socks. Assume all the socks are the same shape, size, etc. and that each sock is equally likely to be chosen. (a) Suppose the sampling is done without replacement. Calculate the probability...
What is Normal, Binomial, Poisson and Exponential Distributions with examples. What is Continuous Distributions and Density...
What is Normal, Binomial, Poisson and Exponential Distributions with examples. What is Continuous Distributions and Density Functions. What is Normal density and Standardizing: Z-Values
Using binomial and poisson distributions to find probabilities using the two equations from binominal and poisson...
Using binomial and poisson distributions to find probabilities using the two equations from binominal and poisson An inspector looks for blemishes in the finish on porcelain and counts the number of defects on batches of 12 vases. If the mean is 1.2, what is the probability he finds exactly one blemish? (poisson) A nail salon tracks the number of customers that enter each minute. In an average minutes 0.35 customers enter. What is the probability at least 1 customer enters...
Prove that the Poisson distribution is in the exponential family of probability distributions given that the...
Prove that the Poisson distribution is in the exponential family of probability distributions given that the Poisson parameter is positive
Describe the differences between the use of the binomial and Poisson distribution. Provide one example of...
Describe the differences between the use of the binomial and Poisson distribution. Provide one example of how each can be used and explain why you selected the example. Short & Sweet please, 150-200 words max 4/2019
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT