In: Math
Use the Multiplication Rule to find the number of positive divisors of 20!. Include a procedure that “builds” such divisors
The 20! can be written as
20 = 20 * 19 * 18 * 17 *16 * 15 * 14 *13* 12*11 * 10 * 9 * 8 * 7 * 6 * 5 * 4* 3 *2 *1
20!=(4*5) * 19 * (2* 9) * 17 * ( 2*8) * (3*5) * (2*7) * (2*6) * 11 * (2 *5) * (3*3) * (2*4) * 7 * (2*3) * 5 *(2*2) *3 *2 *1
20! = (22 *5) *19 * (2 * 32) *17 * (24) * (3*5) *(2*7) * (22*3) *11 *(2*5) * (32) *(23) *7 * (2*3) * 5 *(22) *3 *2 *1
20! = 218*38*54*72*11*13*17*19
Rule : If number n can be written as
n = p1a * p2b *...........*pik.
where p1, p2 ,.......pi are the primes and a, b, ...........k are the powers.
Then number of positive divisors of n are
d(n) = (a+1) * (b+1) *..........*(k+1).
Here n = 20!
p1=2, p2 = 3, p3=5, p4=7, p5 =11, p6 =13, p7=17, p8 = 19
a= 18, b= 8, c= 4, d=2, e=1,f=1,g=1,h=1
Hence number of positive divisors of 20! is
d(20!) = (18+1) * (8+1) * (4+1) * (2+1)*(1+1)*(1+1)*(1+1)*(1+1)
d(20!) = 19 * 9 * 5 * 3 *2*2*2*2
d(20!) = 41040
Number of positive divisors of 20! = 41040.